emproof

Unveiling Secrets in Binaries using Code Detection Strategies

Tim Blazytko

amr_phrazer
synthesis.to
tim@blazytko.to

(W

https://twitter.com/mr_phrazer
https://synthesis.to
mailto:tim@blazytko.to

About Tim

- Chief Scientist, co-founder of emproof

- designs software protections for embedded devices

- trainer for (de)obfuscation and reverse engineering techniques

Setting the Scene

© Navigating in Large Binaries

‘« Common Strategies

=» Code Detection Heuristics

© Large Binary

Analysis Challenges

- locating complex state machines and protocol logic

Analysis Challenges

- locating complex state machines and protocol logic

vulnerability discovery

Analysis Challenges

- locating complex state machines and protocol logic

- detecting cryptographic implementations

Analysis Challenges

- locating complex state machines and protocol logic

- detecting cryptographic implementations

\malware & vulnerability analysis

Analysis Challenges

- locating complex state machines and protocol logic
- detecting cryptographic implementations

- discovering C&C server communication and string decryption routines

Analysis Challenges

- locating complex state machines and protocol logic

- detecting cryptographic implementations

- discovering C&C serv jon routines

malware analysis

Analysis Challenges

- locating complex state machines and protocol logic
- detecting cryptographic implementations
- discovering C&C server communication and string decryption routines

- pinpointing obfuscated code in commercial applications

Analysis Challenges

- locating complex state machines and protocol logic

- detecting cryptographic implementations

- discovering C&C server

software 'pi'ra'cy

- pinpointing obfuscated code in commercial applications

tion routines

Analysis Challenges

- locating complex state machines and protocol logic

- detecting cryptographic implementations

- discovering C&C server communication and string decryption routines
- pinpointing obfuscated code in commercial applications

- identifying API functions in statically-linked executables

Analysis Challenges

- locating complex state machines and protocol logic

- detecting cryptographic implementations

- discoverir S — :
" lembedded firmware analysis

- pinpointing obfuscated code in commercial applications

- identifying API functions in statically-linked executables

Analysis Challenges

- locating complex state machines and protocol logic

- detecting cryptographic implementations

Goal: I'dentifying i'nt'ere'st'ing code locations

- pinpointing obfuscated code in commercial applications

- identifying API functions in statically-linked executables

Where to start?

Common Approaches

- function symbols

Common Approaches

- function symbols

validate_serial()|

Common Approaches

- function symbols

- meaningful strings

Common Approaches

- function symbols

- meaningful strings

“https://evildomain.com”

Common Approaches

- function symbols
- meaningful strings

- interesting API functions

Common Approaches

- function symbols

- meaningful strings

GetAsyncKeyState

- interesting API functions

Common Approaches

- function symbols

- meaningful strinos
A Not always applicable

- Iinteresting API functions

= Code Detection Heuristics

Code Detection Heuristics

Identification of interesting code constructs

Code Detection Heuristics

Identification of interesting code constructs

- guide manual analysis

Code Detection Heuristics

Identification of interesting code constructs

- guide manual

False positives will occur

Code Detection Heuristics

Identification of interesting code constructs

- guide manual analysis

- architecture-agnostic

Code Detection Heuristics

Identification of interesting code constructs

All architectures supported by the disassembler

- architecture-agnostic

Code Detection Heuristics

Identification of interesting code constructs

- guide manual analysis
- architecture-agnostic

- efficient to compute

Code Detection Heuristics

Identification of interesting code constructs

“““I'Applicable to ~100,000 functions

- architecture-agnostic

- efficient to compute

How?

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

* uncommon

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

* uncommon

- basic block/function size

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

* uncommon

complex code

- basic block/function size

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

* uncommon

- basic block/function size

- control-flow graph characteristics

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

* uncommon

\underlying code constructs

- basic block/function size

- control-flow graph characteristics

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

* uncommon

- basic block/function size
- control-flow graph characteristics

- frequency analysis

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

* uncommon

(un)common code patterns

- basic block/function size

- control-flow graph characteristics

- frequency analysis

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

* uncommon

- basic block/function size
- control-flow graph characteristics
- frequency analysis

- usage of intermediate representations

Code Complexity and Statistical Analysis

Interesting code is

- (artificially) complex
- frequently executed

- uncommon

architecture-agnostic instruction patterns

- basic block/function size

- control-flow graph characteristics
- frequency analysis
- usage of intermediate representations

Detection Heuristics

Heuristics

1. large basic blocks
complex functions
frequently called functions
. state machines

gR W

. uncommon instruction sequences

Detection Heuristics

Heuristics
1. large basic blocks
complex functions
frequently called functions
state machines

s W

. uncommon instruction sequences

- most heuristics relative to all functions in the binary

Detection Heuristics

Heuristics
1. large basic blocks
complex functions
frequently called functions

Stagte marchinnc

.+ Clear separation between functions

U

- most heuristics relative to all functions in the binary

Detection Heuristics

Heuristics

1. large basic blocks
complex functions
frequently called functions
. state machines

gR W

. uncommon instruction sequences

- most heuristics relative to all functions in the binary

- each heuristic detects different patterns

Detection Heuristics

Heuristics

1. large basic blocks
complex functions
frequently called functions

. state machines

oo | KNOw what to use & when|

gR W

- most heuristics relative to all functions in the binary

- each heuristic detects different patterns

Large Basic Blocks

Large Basic Blocks

Identification of functions with large basic blocks

Large Basic Blocks

Identification of functions with large basic blocks

- ~5-7 instructions per basic block (on average)

Large Basic Blocks

Identification of functions with large basic blocks

- ~5-7 instructions per basic block (on average)

- larger basic blocks indicate complex straight-line code

Large Basic Blocks

Identification of functions with large basic blocks

- ~5-7 instructions per basic block (on average)
- larger basic blocks indicate complex straight-line code

- compute per function:

#instructions
#basic blocks

Complex Straight-Line Code

- unrolled loops
- cryptographic implementations
- initialization routines

- arithmetic obfuscation

Example: Anti-Cheat |

average #instructions/block per function (in descending order):

1,456
198
68

63

59

55
52

51
49

46

Example: Anti-Cheat |

average #instructions/block per function (in descending order):

68

55
52

Example: Anti-Cheat |

average #instructions/block per function (in descending order):

68

arithmetic and virtualizaSEion—based obfuscation

52

16

Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ull 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133

HalpBlkInitializeProcessorState 103

17

Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

491
SymCryptSha256AppendBlocks_ull 236
HalpRestoreHvEnlightenment 147
133

103

17

Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
So 6
linitialization routines/
MiInitializeDummyPages 133

HalpBlkInitializeProcessorState 103

17

Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491

236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133

HalpBlkInitializeProcessorState 103

17

Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
cryptographic implementations
MiInitializeDummyPages 133

HalpBlkInitializeProcessorState 103

17

Complex Functions

Complex Functions

Identification of functions with large control-flow graphs

20

Complex Functions

Identification of functions with large control-flow graphs

- large functions indicate a complex code logic
- file parsing
- dispatching routines and network protocols

- obfuscation

20

Complex Functions

Identification of functions with large control-flow graphs

- large functions indicate a complex code logic
- file parsing
- dispatching routines and network protocols

- obfuscation

- efficient metric: cyclomatic complexity

20

Cyclomatic Complexity

#edges — #basic blocks + 2

21

Cyclomatic Complexity

#edges — #basic blocks + 2

b

N\

-

+ 4 basic blocks
- 4 edges

21

Cyclomatic Complexity

#edges — #basic blocks + 2

b

N\

-

+ 4 basic blocks
- 4 edges

cyclomatic complexity: 2

21

Example: ntoskrnl.exe (Windows Kernel)

cyclomatic complexity per function (in descending order):

2,964
2,371
1,506
718
642
435
414
318
281
274

22

Example: ntoskrnl.exe (Windows Kernel)

cyclomatic complexity per function (in descending order):

718
642
435
414
318
281
274

22

Example: ntoskrnl.exe (Windows Kernel)

cyclomatic complexity per function (in descending order):

2,964
2,371
1,506

related to PatchGuard (anti-tamper protection)]

43D
414
318
281
274

22

Frequently Called Functions

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

0Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef
Oxdeadbeef

Frequently Called Functions

Identification of functions which are frequently called from different functions

25

Frequently Called Functions

Identification of functions which are frequently called from different functions

What kind of functions are called frequently?

25

Frequently Called Functions

Identification of functions which are frequently called from different functions

- allows the identification of API functions in statically-linked executables

25

Frequently Called Functions

Identification of functions which are frequently called from different functions

- allows the identification of API functions in statically-linked executables

- can sometimes also detect string decryption & hash functions in malware

25

Frequently Called API Functions

- memory management
- data movement
- string operations

- file I/O operations

26

Example: XOR DDoS (Malware)

Most called functions (from unique callers) in the statically-linked malware:

free 293
memcpy 191
strlen 184
memset 174
__libc_malloc 151

__111 _unlock_wake_private 148
__111_lock_wait_private 122
ptmalloc_init 114
__strtol_internal 99
strcmp 93

27

Example: XOR DDoS (Malware)

Most called functions (from unique callers) in the statically-linked malware:

293
191
184
174
151
__111 _unlock_wake_private 148
__111_lock_wait_private 122
114
99
93

27

Example: XOR DDoS (Malware)

Most called functions (from unique callers) in the statically-linked malware:

free 293
memcpy 191
strlen 184

frequently called API functions
__[LL_UNLOCK_WaKe_private 143
__111_lock_wait_private 122
ptmalloc_init 114
__strtol_internal 99
strcmp 93

27

Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

crc32 1253
LoadLibraryA 1253
__seterrormode 320

28

Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

1253
1253
__seterrormode 320

28

Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

hash-based import hiding

__seterrormode 320

28

Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

crc32
LoadLibraryA
__seterrormode 320

28

Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

potential clustering of functions

__seterrormode 320

28

ldentification of State Machines

L L ey
s

B

State Machines

Identification of functions with loop-based dispatching routines

31

State Machines

Identification of functions with loop-based dispatching routines

while(true) {
switch(state) {
case state_0: ...
case state_1: ...

case state_n: ...

}
}

31

State Machines

Identification of functions with loop-based dispatching routines

while(true) {
switch(state) {
case state_0: ...
case state_1: ...

case state_n: ...
¥
}

- state machines often implement a complex program logic

31

Complex State Machines

- file format parsing

- input validation & sanitization

- network protocol dispatching

- C&C server communication & command dispatching

- data encoding/decoding

32

State Machine Heuristic

| N
] Controller

B Se—

L

. Controlled Blocks

State Machine Heuristic

~
] Controller

i e it

L, '

. Controlled Blocks

#controlled blocks
#blocks in the function

33

PlugX (Malware)

- C&C communication & command dispatching

34

PlugX (Malware)

- C&C communication & command dispatching

1s

- recursive directory traversal

34

PlugX (Malware)

- C&C communication & command dispatching

1s

- recursive directory traversal

gcc

- file parsing and tokenizing

34

Uncommon Instruction Sequences

mov
mov
cm

su
not
clc
cmc
cm

no
cmp
cmc
and
Jjmp
mov
pushfq
movzx
and
po

su
shld
Xor
mov
cm
tegt
Xor

eax, dword [rb pl
ecx, dword [rbp + 4]
rliw, ril3w

rbp, 4

eax

rdx, 0x28bl05fa
ecx
r12b, rob

eax
Oxc
word [rbp + 8], eax

ecx

eax, riow

ax, di

qword [rbp]
S1, 4

rax, rdx, 0x1b
ah, 0x&4

eax, dword [rsi]
ecx, rilid

r10 0X179708d5
eax, ebx

Sp
ec
stc
ror
mp
ec
clc
bswap
test
neg
test
cmp
cmch
pus
sub
Xor
and
pop
movsxd
test
add
mp
ea
cmp

jmp

oxfFFFFfffff63380
eax

eax, 1
oxfFFFFFffffff2azo
eax

eax
bp, ©x5124

eax
dil, Oxe9

bx, ril4w

rbx

bx, 0x49f8
dword [rsp], eax
bh, 0xaf

rbx

rax, eax

r13b 0x94
oxf#fffffffffc67c7
rax, [rsp + 0x140]
rbp, rax
OxB557b

rdi

Observation

Statistical Analysis of Assembly Code

Common Instruction Sequences

push rbp

mov rbp, rsp

push rbx

push rax

mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror

lea rdi, [0x7bc6]

mov rsi, rbx

mov rdx, rax

Xor eax, eax

call _warnx

mov byte [0x8678], 0Ox1
add rsp, 0x8

pop rbx

pop rbp

retn 39

Common Instruction Sequences

rbp

rbp, rsp

rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
Xor eax, eax
call _warnx
mov byte [0x8678], 0Ox1
add rsp, 0x8

rbx

rbp
39

Common Instruction Sequences

push rbp

mov rbp, rsp

push rbx

push rax

mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]

proloéues and epilogues

mov I'SI, T'DX

mov rdx, rax

Xor eax, eax

call _warnx

mov byte [0x8678], 0Ox1

add rsp, 0x8

pop rbx

pop rbp

retn 39

Common Instruction Sequences

push rbp

mov rbp, rsp

push rbx

push rax
rbx, qword [rdi+0x30]
edi, dword [rdi+0x38]
_strerror

lea rdi, [0x7bc6]

mov rsi, rbx

mov rdx, rax

Xor eax, eax

call _warnx

mov byte [0x8678], 0Ox1

add rsp, 0x8

pop rbx

pop rbp

retn 39

Common Instruction Sequences

push rbp

mov rbp, rsp

push rbx

push rax

mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]

211 ctnavnan

dfunction calls

mov rsi, rbX

mov rdx, rax

Xor eax, eax

call _warnx

mov byte [0x8678], 0Ox1

add rsp, 0x8

pop rbx

pop rbp

retn 39

Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
rdi, [0x7bc6]
rsi, rbx
rdx, rax
Xor eax, eax
call _warnx
mov byte [0x8678], 0Ox1
add rsp, 0x8
pop rbx
pop rbp
retn 39

Common Instruction Sequences

push rbp

mov rbp, rsp

push rbx

push rax

mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]

P i | ctrwvanwnan

data movement

mov rsi, rbX

mov rdx, rax

Xor eax, eax

call _warnx

mov byte [0x8678], 0Ox1

add rsp, 0x8

pop rbx

pop rbp

retn 39

Uncommon Instruction Sequences

Identification of functions with a large number of unusual instruction sequences

- intensive use of floating-point instructions
- cryptographic implementations

- obfuscated code

40

Statistical Analysis

ground truth of the 1,000 most common instruction sequences:

mov mov mov
mov call mov
mov mov call

sar mov mov

4

Statistical Analysis

ground truth of the 1,000 most common instruction sequences:

mov mov mov
mov call mov
mov mov call

sar mov mov

How many instruction sequences are not in the ground truth?

4

Statistical Analysis

ground truth of the 1,000 most common instruction sequences:

mov mov mov
mov call mov
mov _ mov call
architecture-agnostic implementation based on intermediate representations

sar mov mov

How many instruction sequences are not in the ground truth?

4

Example: ci.d11 (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani
SymCryptFdefRawMulMulx1024
SymCryptParallelSha256AppendBlocks_ymm
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigninglLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0O

42

Example: ci.d11 (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

__security_check_cookie

Gvd5e6c0

42

Example: ci.d11l (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani

cryptographic implementations

SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigninglLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0O

42

Example: ci.d11 (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani
SymCryptFdefRawMulMulx1024
SymCryptParallelSha256AppendBlocks_ymm
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigninglLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx

42

Example: ci.d11l (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptShaZ56AppendBlocks shani

L CAaALD 1.V P IV PP | L Wata W)

virtualization-based obfuscation]
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigninglLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0O

42

Conclusion

1. efficient and architecture-agnostic heuristics
2. detects a wide range of interesting code constructs

3. false positives will occur

44

1. efficient and architecture-agnostic heuristics
2. detects a wide range of interesting code constructs

3. false positives will occur
Useful methods to guide manual analysis in unknown binaries.

44

Binary Ninja Plugin

Plugins Window Help

Snippets emotet — Binary Ni

Debugger

Obfuscation Detection All

Objective-C Complex Functions

Patch Opaque Predicates Flattened Functions

Signature Library Instruction Overlapping
. Large Basic Blocks

Manage Plugins]

Most Called Functions

Open Plugin Folder...]
Uncommon Instruction Sequences

https://github.com/mrphrazer/obfuscation_detection

https://github.com/mrphrazer/obfuscation_detection

Binary Ninja Plugin

Log
Search log

[Default]

[Default] Control Flow Flattening

[Default] Function ©x4063f@ (sub_4063f0) flattening .9929577464788732.
[Default] Function ©x4012a@ (sub_40812a0) flattening .9855072463768116 .
[Default] Function @x402b6@ (sub_4082b60) flattening .9855072463768116 .
[Default] Function ©x409e28 (sub_4089e20) flattening .9846153846153847.
[Default] Function 8x40a4b@ (sub_48a4bg) flattening .9821428571428571.
[Default] Function ©x404f50 (sub_404f50) flattening .9818181818181818.
[Default] Function ©x402218 (sub_4082210) flattening .9807692307692307 .
[Default] Function @x4025a@ (sub_40825a0) flattening .9787234042553191.
[Default] Function ©x40a9de (sub_40a9de) flattening .9772727272727273.
[Default] Function ©x409530 (sub_409530) flattening .9761904761904762 .
[Default] Function ©x407068 (sub_4070660) flattening .975609756097561 .
[Default] Function 8x401fa@ (sub_4081fal) flattening .975609756097561 .
[Default] Function ©x406080 (sub_406080) flattening .975.

[Default] Function ©x4038b8 (sub_4038b0) flattening .975.

[Default] Function 8x401948 (sub_4081940) flattening .9736842105263158.
[Default] Function ©x408660 (sub_408660) flattening .972972972972973.
[Default] Function 0x408f38 (sub_408f30) flattening .972972972972973.
[Default] Function ©x409868 (sub_409860) flattening .9714285714285714.

https://github.com/mrphrazer/obfuscation_detection
45

https://github.com/mrphrazer/obfuscation_detection

Plugin Manager

Obfuscation Detection 1.7

Tim Blazytko community | GPL-20 | % 351 | LastUpdate: 2023-03-14
Category: helper

detect code and other i

Description License

Obfuscation Detection (v1.7)

Author: Tim Blazytko

detect code and other i

Description:

Obfuscation Detection is a Binary Ninja plugin to detect code and i ing code (e.g., state machines) in binaries. Given a binary, the plugin eases analysis by
identifying code locations which might be worth a closer look during reverse engineering.

Based on various heuristics, the plugin pinpoints functions that contain complex or . Such code may implement
obfuscated code
state machines and protocols
C&C server communication
>string decryption routines
cryptographic algorithms
The following blog posts provide more information about the underlying heuristics and demonstrate their use cases:
o Automated Detection of Control-flow Flattening
Automated Detection of Obfuscated Code
Statistical Analysis to Detect Uncommon Code

Some example use cases can be found in examples.

Core Features

- common approaches to navigate in large binaries
- architecture-agnostic detection heuristics to pinpoint intesting code constructs

- useful in many reverse engieering scenarios

https://github.com/mrphrazer/obfuscation_detection/

Tim Blazytko
amr_phrazer

synthesis.to
tim@blazytko.to

(R

47

https://github.com/mrphrazer/obfuscation_detection/
https://twitter.com/mr_phrazer
https://synthesis.to
mailto:tim@blazytko.to

References

- “Automated Detection of Obfuscated Code” by Tim Blazytko
https://synthesis.to0/2021/08/10/obfuscation_detection.html

- “Automated Detection of Control-flow Flattening” by Tim Blazytko
https://synthesis.to0/2021/03/03/flattening_detection.html

- “Statistical Analysis to Detect Uncommon Code” by Tim Blazytko
https:

//synthesis.to0/2023/01/26/uncommon_instruction_sequences.html

48

https://synthesis.to/2021/08/10/obfuscation_detection.html
https://synthesis.to/2021/03/03/flattening_detection.html
https://synthesis.to/2023/01/26/uncommon_instruction_sequences.html
https://synthesis.to/2023/01/26/uncommon_instruction_sequences.html

