Control Flow Analysis

Tim Blazytko
amr_phrazer
timpblazytko.to
https://synthesis.to

https://synthesis.to

Why?

- high-level structure of a function
- detect branches and loops
- pattern matching to spot interesting code parts

- foundation for automated program analysis

Basic Block

Basic Block

- sequence of ordered instructions

Basic Block

- sequence of ordered instructions

- single entry: only first instruction can be target of a branch

Basic Block

- sequence of ordered instructions
- single entry: only first instruction can be target of a branch

- single exit: only last instruction can branch to other basic blocks

Basic Block Identification

Rules: Leader Instruction Identification

1. first instruction is a leader
2. target of a control flow transfer is a leader

3. instruction that immediately follows a control flow transfer is a leader

Split on calls?

- strict basic block definition: yes

- calls interrupt the control flow

Split on calls?

- strict basic block definition: yes

- calls interrupt the control flow

- many tools handle it differently due to readability reasons

- most calls return to the next instruction

Split on calls?

- strict basic block definition: yes

- calls interrupt the control flow

- many tools handle it differently due to readability reasons

- most calls return to the next instruction

Know how your tool handles it.

Basic Blocks

; leader:

0x170A0:
0x170A3:

; leader:

0x170A5:

; leader:

0x170A7:
0x170A9:
0x170AC:

; leader:

0x170AE:
0x1760B1:
0x170B4:

; leader:

0x170B8:
0x170BB:
0x170BE:

; leader:

0x170C0:

; leader:

0x170C2:

first instruction
cmp edi, 26h
jz short 0x170CO

follows a control
jg short 0x170B8

follows a control
Xor eax, eax
cmp edi, 16h
jz short 0x170C2

follows a control
cmp edi, 16h
setnz al
retn

target of control
cmp edi, 5Fh
setnz al
retn

target of control
Xor eax, eax

target of control
retn

flow

flow

flow

flow

flow

flow

transfer

transfer

transfer

transfer

transfer

transfer

Control Flow Graph

loc_170a0
EDI, 0x26
loc_176¢c0

i

loc_170ce loc_170a5
XOR EAX, EAX JG loc_170b8
Y \
loc_176b8 (1 loc_170a7 N
CMP EDI, OX5F XOR EAX, EAX
CMP EDI, 0x10
Jz loc_170c2
N J
loc_170ae
loc_170c2 CMP EDI, 0x16
RET SETNZ AL
RET

~ @

Control Flow Graph

Control Flow Graph

- directed multigraph
- nodes are basic blocks
- edges represent control flow between basic blocks

- represents all program paths that might be traversed

1

Control Flow Graph

Entry
A node that has no incoming edges.

Control Flow Graph

Entry
A node that has no incoming edges.

Exit
A node that has no outgoing edges.

Control Flow Graph

Entry
A node that has no incoming edges.

Exit
A node that has no outgoing edges.

Path
A chain of transition between nodes.

Control Flow Graph

Control Flow Graph

- ais aentry node
- fand g are exists
- a— c—d—fisapath between aand f

Dominance Relations

- graph-theoretic concept

- graph-theoretic concept

- analyze relations between basic blocks

- graph-theoretic concept
- analyze relations between basic blocks

- provide guarantees that a basic block x is always executed before y

- graph-theoretic concept
- analyze relations between basic blocks
- provide guarantees that a basic block x is always executed before y

- loop detection and analysis

- graph-theoretic concept

- analyze relations between basic blocks

- provide guarantees that a basic block x is always executed before y
- loop detection and analysis

- foundation for many compiler optimizations and other analysis techniques

Dominator

Dominator

- a node x dominates a node y if every path from the entry node to y goes through x

Dominator

- a node x dominates a node y if every path from the entry node to y goes through x

- x is a dominator of y: (x < y)

Dominator

- a node x dominates a node y if every path from the entry node to y goes through x
- x is a dominator of y: (x < y)

- yis dominated by x: (y > x)

Dominator

- a node x dominates a node y if every path from the entry node to y goes through x
- x is a dominator of y: (x < y)
- yis dominated by x: (y > x)

- dom(y) is the set of all dominators of y (dominator set)

Dominator

- a node x dominates a node y if every path from the entry node to y goes through x
- x is a dominator of y: (x < y)

- yis dominated by x: (y > x)

- dom(y) is the set of all dominators of y (dominator set)

- each node dominates itself: y € dom(y)

Dominator

- a node x dominates a node y if every path from the entry node to y goes through x
- x is a dominator of y: (x < y)

- yis dominated by x: (y > x)

- dom(y) is the set of all dominators of y (dominator set)

- each node dominates itself: y € dom(y)

- entry node dominates all nodes in the graph

Dominator Sets

Dominator Sets

° - dom(a) = {a}

Dominator Sets

° - dom(a) = {a}

- dom(b) = {a, b}
°’°
49

Dominator Sets

° - dom(a) = {a}

- dom(b) = {a, b}

°’° - dom(c) = {a, c}
0’0

Dominator Sets

dom(a) = {a}

dom(b) = {a, b}
dom(c) = {a,c}
dom(d) = {a,d}

Dominator Sets

dom(a) = {a}
dom(b) = {a, b}
dom(c) = {a,c}
dom(d) = {a,d}
dom(e) = {a,c,e}

Dominator Sets

Dominator Sets

Immediate Dominator

Immediate Dominator

- anode x strictly dominates a node y if x <yand x#y: x <y

20

Immediate Dominator

- anode x strictly dominates a node y if x <yand x#y: x <y

- x is an immediate dominator of y if

20

Immediate Dominator

- anode x strictly dominates a node y if x <yand x#y: x <y

- x is an immediate dominator of y if

1. x<y

20

Immediate Dominator

- anode x strictly dominates a node y if x <yand x#y: x <y

- x is an immediate dominator of y if

1. x<y

2. fc:ix<c<y

20

Immediate Dominator

- anode x strictly dominates a node y if x <yand x#y: x <y

- x is an immediate dominator of y if

1. x<y

2. fc:ix<c<y

- X is the closest dominator to y with x # y

20

Immediate Dominator

- anode x strictly dominates a node y if x <yand x#y: x <y

- x is an immediate dominator of y if

1. x<y

2. fc:ix<c<y
- X is the closest dominator to y with x # y

- every node (except entry) has an immediate dominator

20

Immediate Dominators

dom(a) = {a}
dom(b) = {a, b}
dom(c) = {a,c}
dom(d) = {a,d}
dom(e) = {a,c,e}
dom(f) = {a,f}
dom(g) = {a,c,e, g}

21

Immediate Dominators

dom(a) = {a}
dom(b) = {a, b}
dom(c) = {a,c}
dom(d) = {a,d}
dom(e) = {a,c,e}
dom(f) = {a,f}
dom(g) ={a,c,e, g}

21

Immediate Dominators

dom(a) = {a}
dom(b) = {a, b}
dom(c) = {a,c}
dom(d) = {a,d}
dom(e) = {a,c,e}
dom(f) = {a,f}
dom(g) ={a,c,e, g}

21

e}

{a}

{a, b}
{a,c}
= {a,d}

~ N~~~

a
b
c
d
e
7
g

~— Y Y Y Y— = —

dom
dom
dom
+ dom
dom
dom
dom

(7]
—
o
+—
1]
=
£
(@)
o
Q
]
©
©
(h)
£
E

21

Dominator Tree

Dominator Tree

- compact representation of dominance relations

23

Dominator Tree

- compact representation of dominance relations

- build from immediate dominators

23

Dominator Tree

- compact representation of dominance relations
- build from immediate dominators

- xis an immediate dominator of y < (x,y) is an edge in the tree

23

Dominator Tree

- compact representation of dominance relations
- build from immediate dominators
- xis an immediate dominator of y < (x,y) is an edge in the tree

- start node: graph entry

23

Dominator Tree

- compact representation of dominance relations

- build from immediate dominators

- xis an immediate dominator of y < (x,y) is an edge in the tree
- start node: graph entry

- each node dominates its descendants in the tree

23

Dominator Tree

dom(a) = {a}
dom(b) = {a,b}
dom(c) = {a,c}
dom(d) = {a,d}
dom(e) = {a,ce}
dom(f) = {a,f}
dom(g) = {a,c,e,g}

2%

Q
Q
o
-
—
(@]
-
©
c
E
(@)
()

N N ' — —

— N N N N —

2%

Dominator Tree

dom(a) = {a} = root

dom(b) = {a,b} = (a,b)

OO W wng = f0d = (@9
dom(d) = {a,d} = (a,d)

° dom(e) = {a,c,e} = (c,e)

dom(f) = {a.f} = (a.f)

dom(g) = {a,ce,9} = (e9)

2%

Loops

- common construct on function level

26

- common construct on function level

- easy to spot in control flow graphs

26

- common construct on function level
- easy to spot in control flow graphs

- graph-theoretical properties that facilitate many kinds of analysis

26

- common construct on function level
- easy to spot in control flow graphs
- graph-theoretical properties that facilitate many kinds of analysis

- automated loop analysis fundamental for many reverse engineering tasks

26

- common construct on function level
- easy to spot in control flow graphs
- graph-theoretical properties that facilitate many kinds of analysis

- automated loop analysis fundamental for many reverse engineering tasks

What are loops and how can we find them?

26

Strongly Connected Component
A subgraph in which each node is reachable from every other node.

27

Strongly Connected Component
A subgraph in which each node is reachable from every other node.

- natural loops

- compiler generated

- strong mathematical properties

27

Strongly Connected Component
A subgraph in which each node is reachable from every other node.

- natural loops

- compiler generated

- strong mathematical properties
- irreducible loops

- complicate to analyze

- rarely seen (hand-written assembly, code obfuscation)

27

Strongly Connected Component
A subgraph in which each node is reachable from every other node.

- natural loops

- compiler generated

- strong mathematical properties

- irreducible loops

- complicate to analyze

- rarely seen (hand-written assembly, code obfuscation)

We focus only on natural loops.

27

Natural and Irreducible Loop

natural loop irreducible loop

28

Natural Loop

Natural Loop

- strong mathematical properties

30

Natural Loop

- strong mathematical properties

- generated by compilers

30

Natural Loop

- strong mathematical properties
- generated by compilers

- loop header: single entry point that dominates a loop

30

Natural Loop

- strong mathematical properties
- generated by compilers
- loop header: single entry point that dominates a loop

- back edge: edge to a dominator

30

Natural Loop

- strong mathematical properties

- generated by compilers

- loop header: single entry point that dominates a loop
- back edge: edge to a dominator

- loop body: set of nodes within a loop

30

Natural Loop

31

Natural Loop

- 2 is loop header that dominates loop

31

Natural Loop

- 2 is loop header that dominates loop
- {2,3} is loop body

31

Natural Loop

- 2 is loop header that dominates loop
- {2,3} is loop body
- (3,2) is back edge to the dominator

31

Natural Loop Detection

Natural Loop Detection

- find a back edge

1. x dominates y

2. there is an edge (y, x)

33

Natural Loop Detection

- find a back edge

1. x dominates y

2. there is an edge (y, x)
- identify the loop body

1. collect all nodes that are dominated by x

2. filter nodes that can reach y without visiting x

33

Natural Loop Detection

Natural Loop Detection

G’ edge body

Natural Loop Detection

C D

0’ edge body
? (4,3):
<

Natural Loop Detection

D

G’ edge body
? (4,3): {3,4,5,6}
<

Natural Loop Detection

CD

G’ edge body
? (4,3): {3,4,5,6}
() (6, 4):

Natural Loop Detection

CD

G’ edge body
? (4,3): {3,4,5,6}
() (6,4): {4,5,6}

Natural Loop Detection

G’ edge body
G (4,3) (3,456
() (6,4): {4,5,6}

Natural Loop Detection

G’ edge body

? (4,3): {3,4,5,6}
() (6,4): {4,5,6}

c‘ (6,3): {3,4,5,6}
DI

Nested Loops

Nesting Relations

Loops can be

- merged
- disjoint

- nested

36

Nesting Relations

Loops can be

- merged

- they have the same header

- disjoint

- nested

36

Nesting Relations

Loops can be

- merged
- they have the same header

- hard to tell how they relate to each other

- disjoint

- nested

36

Nesting Relations

Loops can be

- merged
- they have the same header

- hard to tell how they relate to each other
- disjoint

- if they have different headers

- nested

36

Nesting Relations

Loops can be

- merged
- they have the same header

- hard to tell how they relate to each other
- disjoint
- if they have different headers

- their intersection is empty

- nested

36

Nesting Relations

Loops can be

- merged

- they have the same header

- hard to tell how they relate to each other
- disjoint

- if they have different headers

- their intersection is empty
- nested

- one function body is entirely contained within the other

36

Merged Loops

37

Merged Loops

o 111 {2,3}

(2 b {2,4}
L3

37

Merged Loops

& b 23)
/.\ L {2,4}
°‘° LNl = {2}

37

Disjoint Loops

38

Disjoint Loops

111 {2,5}

b {34}

38

Disjoint Loops

38

-
TG

0
o
(@)
(@)
I
©
Q
-
0
Q
=2

Nested Loops

[11 {47 5}

Nested Loops

<,
N 1
A o {4,5)
O b {3,4,5,6}
&
D

Nested Loops

&,
G
[1: {475}
C2D
b {3,4,5,6}
G
é L {2,3,4,5,6,7}
D

Nested Loops

G
<,
& L: {4,5} innermost loop
l: {3,4,5,6}
D
é L {2,3,4,5,6,7}
D,

Nested Loops

<D,
2D
& L: {4,5} innermost loop
L {3,4,5,6} inner/outer loop of [3/l4
<D,
é L {2,3,4,5,6,7}
<,

Nested Loops

L: {4,5} innermost loop
0 L {3,4,5,6} inner/outer loop of [3/l4
é : {2,3,4,5,6,7} outermost loop

Nested Loops

O
: L: {4,5} innermost loop
O L {3,4,5,6} inner/outer loop of [3/l4
é : {2,3,4,5,6,7} outermost loop
O hcbhbcl

Loop Unrolling

- reasoning about loops can be hard

41

- reasoning about loops can be hard

- undecidability

41

- reasoning about loops can be hard

- undecidability

-+ termination condition

41

- reasoning about loops can be hard

- undecidability
- termination condition

- path explosion

41

- reasoning about loops can be hard
- undecidability
- termination condition
- path explosion

- large number of iterations

41

- reasoning about loops can be hard

- undecidability
- termination condition
- path explosion

- large number of iterations

- analysis with a fixed number of loop iterations beneficial

41

- reasoning about loops can be hard
- undecidability
- termination condition
- path explosion
- large number of iterations
- analysis with a fixed number of loop iterations beneficial

- many questions remain decidable

41

- reasoning about loops can be hard

- undecidability
- termination condition
- path explosion

- large number of iterations

- analysis with a fixed number of loop iterations beneficial

- many questions remain decidable

- limited analysis scope

41

Loop Unrolling

- set an upper iteration bound k

42

Loop Unrolling

- set an upper iteration bound k

- transform control flow graph into semantically a directed acyclic graph

42

Loop Unrolling

- set an upper iteration bound k

- transform control flow graph into semantically a directed acyclic graph

1. remove back edge

2. duplicate nodes of loop body k times and preserve edge structure

42

Loop Unrolling

- set an upper iteration bound k

- transform control flow graph into semantically a directed acyclic graph

1. remove back edge

2. duplicate nodes of loop body k times and preserve edge structure

- transformed graph is semantically equivalent for up to k loop iterations

42

Loop Unrolling

natural loop

43

Loop Unrolling

natural loop unrolling depth 0

43

Loop Unrolling

natural loop unrolling depth 0 unrolling depth 1

43

Conclusion

Control Flow Analysis

- basic blocks

- control flow graph construction
- dominance relations

- natural loop detection

- loop properties and transformations

45

