
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Syntia: Synthesizing the Semantics
of Obfuscated Code

Tim Blazytko, Moritz Contag, Cornelius Aschermann,
and Thorsten Holz, Ruhr-Universität Bochum

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko

Syntia: Synthesizing the Semantics of Obfuscated Code

Tim Blazytko, Moritz Contag, Cornelius Aschermann, Thorsten Holz

Ruhr-Universität Bochum, Germany
{firstname.lastname}@rub.de

Abstract

Current state-of-the-art deobfuscation approaches operate
on instruction traces and use a mixed approach of sym-
bolic execution and taint analysis; two techniques that
require precise analysis of the underlying code. However,
recent research has shown that both techniques can easily
be thwarted by specific transformations.

As program synthesis can synthesize code of arbitrary
code complexity, it is only limited by the complexity of
the underlying code’s semantic. In our work, we propose
a generic approach for automated code deobfuscation
using program synthesis guided by Monte Carlo Tree
Search (MCTS). Specifically, our prototype implementa-
tion, Syntia, simplifies execution traces by dividing them
into distinct trace windows whose semantics are then
“learned” by the synthesis. To demonstrate the practical
feasibility of our approach, we automatically learn the se-
mantics of 489 out of 500 random expressions obfuscated
via Mixed Boolean-Arithmetic. Furthermore, we synthe-
size the semantics of arithmetic instruction handlers in
two state-of-the art commercial virtualization-based ob-
fuscators (VMProtect and Themida) with a success rate
of more than 94%. Finally, to substantiate our claim that
the approach is generic and applicable to different use
cases, we show that Syntia can also automatically learn
the semantics of ROP gadgets.

1 Introduction

Code obfuscation describes the process of applying an
obfuscating transformation to an input program to obtain
an obfuscated copy of the program. Said copy should be
more complex than the input program such that an analyst
cannot easily reason about it. An obfuscating transfor-
mation is further desired to be semantics-preserving, i. e.,
it must not change observable program behavior [12].
Code obfuscation can be leveraged in many application
domains, for example in software protection solutions

to prevent illegal copies, or in malicious software to im-
pede the analysis process. In practice, different kinds of
obfuscation techniques are used to hinder the analysis
process. Most notably, industry-grade obfuscation solu-
tions are typically based on Virtual Machine (VM)-based
transformations [38, 55, 57, 58], which are considered one
of the strongest obfuscating transformations available [2].
While these protections are not perfect and in fact are
broken regularly, attacking them is still a time-consuming
task that requires highly specific domain knowledge of
the individual Virtual Machine implementation. Conse-
quently, for example, this gives game publishers a head-
start in which enough revenue can be generated to stay
profitable. On the other hand, obfuscated malware stays
under the radar for a longer time, until concrete analysis
results can be used to effectively defend against it.

To deal with this problem, prior research has explored
many different approaches to enable deobfuscation of
obfuscated code. For example, Rolles proposes static
analysis to aid in deobfuscation of VM-based obfuscation
schemes [44]. However, it incorporates specific imple-
mentation details an attacker has to know a priori. Further,
static analysis of obfuscated code is notoriously known
to be intractable in the general case [12]. Hence, recent
deobfuscation proposals have shifted more towards dy-
namic analysis [13, 61, 62]. Commonly, they produce
an execution trace and use techniques such as (dynamic)
taint analysis or symbolic execution to distinguish input-
dependent instructions. Based on their results, the pro-
gram code can be reduced to only include relevant, input-
dependent instructions. This effectively strips the obfus-
cation layer. Even though such deobfuscation approaches
sound promising, recent work proposes several ways to
effectively thwart underlying techniques, such as sym-
bolic execution [2]. For this reason, it suggests itself to
explore distinct techniques that may be leveraged for code
deobfuscation.

In this paper, we propose an approach orthogonal to
prior work on approximating the underlying semantics

USENIX Association 26th USENIX Security Symposium 643

of obfuscated code. Instead of manually analyzing the
instruction handlers used in virtualization-based (VM) ob-
fuscation schemes in a complex and tedious manner [44]
or learning merely the bytecode decoding (not the seman-
tics) of these instruction handlers [53], we aim at learning
the semantics of VM-based instruction handlers in an auto-
mated way. Furthermore, our goal is to develop a generic
framework that can deal with different use cases. Natu-
rally, this includes constructs close to obfuscation, such
as Mixed Boolean-Arithmetic (MBA), different kinds of
VM-based obfuscation schemes, or even analysis of code
chunks (so called gadgets) used in Return-oriented Pro-
gramming (ROP) exploits.

To this extend, we explore how program synthesis can
be leveraged to tackle this problem. Broadly speaking,
program synthesis describes the task of automatically con-
structing programs for a given specification. While there
exists a variety of program synthesis approaches [21], we
focus on SMT-based and stochastic program synthesis in
the following, given its proven applicability to problem
domains close to trace simplification and deobfuscation.
SMT-based program synthesis constructs a loop-free pro-
gram based on first-order logic constraints whose satisfia-
bility is checked by an SMT solver. For component-based
synthesis, components are described that build the instruc-
tion set of a synthesized program; for instance, compo-
nents may be bitwise addition or arithmetic shifts. The
characteristics of a well-formed program such as the inter-
connectivity of components are defined and the semantics
of the program are described as a logical formula. Then,
an SMT solver returns a permutation of the components
that forms a well-encoded program following the previ-
ously specified intent [22,24], if it is satisfiable, i. e., such
a permutation does exist.

Instead of relying on a logical specification of program
intent, oracle-guided program synthesis uses an input-
output (I/O) oracle. Given the outputs of an I/O oracle
for arbitrary program inputs, program synthesis learns
the oracle’s semantics based on a finite set of I/O sam-
ples. The oracle is iteratively queried with distinguishing
inputs that are provided by an SMT solver. Locating
distinguishing inputs is the most expensive task in this ap-
proach. The resulting synthesized program has the same
input-output behavior as the I/O oracle [24]. Contrary to
SMT-based approaches that only construct semantically
correct programs, stochastic synthesis approximates pro-
gram equivalence and thus remains faster. In addition, it
can also find partial correct programs. Program synthesis
is modeled as heuristic optimization problem, where the
search is guided by a cost function. It determines, for
instance, output similarity of the synthesized expression
and the I/O oracle for same inputs [50].

As program synthesis is indifferent to code complex-
ity, it can synthesize arbitrarily obfuscated code and is

only limited by the underlying code’s semantic complex-
ity. We demonstrate that a stochastic program synthesis
algorithm based on Monte Carlo Tree Search (MCTS)
achieves this in a scalable manner. To show feasibility
of our approach, we automatically learned the semantics
of 489 out of 500 MBA-obfuscated random expressions.
Furthermore, we synthesize the semantics of arithmetic
instruction handlers in two state-of-the art commercial
virtualization-based obfuscators with a success rate of
more than 94%. Finally, to show applicability to areas
more focused on security aspects, we further automati-
cally learn the semantics of ROP gadgets.

Contributions In summary, we make the following
contributions in this paper:

• We introduce a generic approach for trace simpli-
fication based on program synthesis to obtain the
semantics of different kinds of obfuscated code. We
demonstrate how Monte Carlo Tree Search (MCTS)
can be utilized in program synthesis to achieve a
scalable and generic approach.

• We implement a prototype of our method in a tool
called Syntia. Based on I/O samples from assembly
code as input, Syntia can apply MCTS-based pro-
gram synthesis to compute a simplified expression
that represents a deobfuscated version of the input.

• We demonstrate that Syntia can be applied in sev-
eral different application domains such as simplify-
ing MBA expressions by learning their semantics,
learning the semantics of arithmetic VM instruction
handlers and synthesizing the semantics of ROP gad-
gets.

2 Technical Background

Before presenting our approach to utilize program syn-
thesis for recovering the semantics of obfuscated code,
we first review several concepts and techniques we use
throughout the rest of the paper.

2.1 Obfuscation
In the following, we discuss several techniques that
qualify as an obfuscating transformation, namely
virtualization-based obfuscation, Return-oriented Pro-
gramming and Mixed Boolean-Arithmetic.

2.1.1 Virtualization-based Obfuscation

Contemporary software protection solutions such as VM-
Protect [58], Themida [38], and major game copy protec-
tions such as SecuROM base their security on the concept

644 26th USENIX Security Symposium USENIX Association

5b 60 97 84 66 d8 aa 11 22

Bytecode

handler_add8

handler_mul16

handler_not8

…

handler_sub32

Handler Table

Fetch

Decode

Execute

VM Entry
switch from native

to VM context

Native Code
corresponds to

handler_exit

Figure 1: The Fetch–Decode–Execute cycle of a Virtual
Machine. Native code calls into the VM, upon which
startup code is executed (VM entry). It performs the con-
text switch from native to VM context. Then, the next
instruction is fetched from the bytecode stream, mapped
to the corresponding handler using the handler table (de-
coding) and, finally, the handler is executed. The process
repeats for subsequent VM instructions in the bytecode
until the exit handler is executed, which returns back to
native code.

of Virtual Machine-based obfuscation (also known as
virtualization-based obfuscation [44]).

Similar to system-level Virtual Machines (VMs) that
emulate a whole system platform, process-level VMs em-
ulate a foreign instruction set architecture (ISA). The
core idea is to translate parts of a program, e. g., a func-
tion f containing intellectual property, from its native
architecture—say, Intel x86—into a custom VM-ISA. The
obfuscator then embeds both the bytecode of the virtual-
ized function (its instructions encoded for the VM-ISA)
along with an interpreter for the new architecture into
the target binary whilst removing the function’s origi-
nal, native code. Every call to f is then replaced with
an invocation of the interpreter. This effectively thwarts
any naive reverse engineering tool operating on the native
instruction set and forces an adversary to analyze the inter-
preter and re-translate the interpreted bytecode back into
native instructions. Commonly, the interpreter is heavily
obfuscated itself. As VM-ISAs can be arbitrarily complex
and generated uniquely upon protection time, this process
is highly time-consuming [44].

Components. The (VM) context holds internal vari-
ables of the VM-ISA such as general-purpose registers or
the virtual instruction pointer. It is initialized by sequence
called VM entry, which handles the context switch from
native code to bytecode.

After initialization, the VM dispatcher fetches and de-
codes the next instruction and invokes the corresponding

handler function by looking it up in a global handler table
(depicted in Figure 1). The latter maps indices, obtained
from the instruction’s bytecode in the decoding step, to
handlers addresses. In its most simple implementation,
all handler functions return to a central dispatching loop
which then dispatches the next handler. Eventually, exe-
cution flow reaches a designated handler, VM exit, which
performs the context switch back to the native processor
context and transfers control back to native code.

Custom ISA. The design of the target VM-ISA is en-
tirely up to the VM designer. Still, to maximize the
amount of handlers an analyst has to reverse engineer,
VMs often opt for reduced complexity for the individual
handlers, akin to the RISC design principle. To exemplify,
consider the following Intel x86 code:

1 mov eax , dword ptr [0 x401000 + ebx * 4]
2 pop dword ptr [eax]

This might get translated into VM-ISA as follows:

1 vm_mov T0, vm_context.real_ebx
2 vm_mov T1, 4
3 vm_mul T2, T0, T1
4 vm_mov T3, 0x401000
5 vm_add T4, T2, T3
6 vm_load T5 , dword(T4)
7 vm_mov vm_context.real_eax , T5
8 vm_mov T6, T5
9 vm_mov T7, vm_context.real_esp

10 vm_add T8, T7, T1
11 vm_mov vm_context.real_esp , T8
12 vm_load T9, dword(T7)
13 vm_store dword(T6), T9

It favors many small, simple handlers over fewer more
complicated ones.

Bytecode Blinding. In order to prevent global analysis
of instructions, the bytecode bc of each VM instruction is
blinded based on its instruction type, i. e., its correspond-
ing handler h, at protection time. Likewise, each han-
dler unblinds the bytecode before decoding its operands:
(bc,vm_key)← unblindh(blinded_bc,vm_key).

The routine is parameterized for each handler h and
updates a global key register in the VM context. Conse-
quently, instruction decoding can be flow-sensitive: An
adversary is unable to patch a single VM instruction with-
out re-blinding all subsequent instructions. This, in turn,
requires her to extract the unblinding routines from ev-
ery handler involved. The individual unblinding routines
commonly consist of a combination of arithmetic and
logical operations.

Handler Duplication. In order to easily increase anal-
ysis complexity, common VMs duplicate handlers such

USENIX Association 26th USENIX Security Symposium 645

that the same virtual instruction can be dispatched by mul-
tiple handlers. In presence of bytecode blinding, these
handlers’ semantics only differ in the way they unblind
the bytecode, but perform the same operation on the VM
context.

Architectures. In his paper about interpretation tech-
niques, Klint denotes the aforementioned concept using
a central decoding loop as the “classical interpretation
method” [28]. An alternative is proposed by Bell with
Threaded Code (TC) [4]: He suggests inlining the dis-
patcher routine into the individual handler functions such
that handlers execute in a chained manner, instead of
returning to a central dispatcher. Nevertheless, the dis-
patcher still indexes a global handler table.

In Klint’s paper, however, he describes an extension of
TC, Direct Threaded Code (DTC). As in the TC approach,
the dispatcher is appended to each handler. The handler
table, though, is inlined into the bytecode of the instruc-
tion. Each instruction now directly specifies the address
of its corresponding handler. This way, in presence of
bytecode blinding, not all handler addresses are exposed
immediately, but only those used on a certain path in the
bytecode.

Attacks. Several academic works have been published
that propose novel attacks on virtualization-based obfus-
cators [13, 44]. Section 6.3 discusses and classifies them.
In addition, it draws a comparison to our approach.

2.1.2 Return-oriented Programming

In Return-oriented Programming (ROP) [30, 52], shell-
code is expressed as a so-called ROP chain, a list of
references to gadgets and parameters for those. In the
preliminary step of an attack, the adversary makes esp
point to the start of the chain, effectively triggering the
chain upon function return. Gadgets are small, general
instruction sequences ending on a ret instruction; other
flavors propose equivalent instructions. Concrete values
are taken from the ROP chain on the stack. As an example,
consider the gadget pop eax; ret: It takes the value on
top of the stack, places it in eax and, using the ret instruc-
tion, dispatches the next gadget in the chain. By placing
an arbitrary immediate value imm32 next to this gadget’s
address in the chain, an attacker effectively encodes the
instruction mov eax, imm32 in her ROP shellcode. De-
pending on the gadget space available to the attacker, this
technique allows for arbitrary computations [39, 51].

Automated analysis of ROP exploits is a desirable goal.
However, its unique structure poses various challenges
compared to traditional shellcode detection. In their pa-
per, Graziano et al. outline them and propose an analysis
framework for code-reuse attacks [19]. Amongst others,

they mention challenges such as verbosity of the gadgets,
stack-based chaining, lack of immediates, and the distinc-
tion of function calls and regular control flow. Further,
they stress how an accurate emulation of gadgets is im-
portant for addressing these challenges. Considering the
aforementioned challenges, at its core, Return-oriented
Programming can be seen as an albeit weaker flavor of
obfuscated code. In particular, the chained invocation of
gadgets is reminiscent of handlers in VM-based obfusca-
tion schemes following the threaded code principle.

In addition to its application to exploitation, ROP has
seen other fields of applications such as rootkit devel-
opment [59], software watermarking [34], steganogra-
phy [33], and code integrity verification [1], which rein-
forces the importance of automatic ROP chain analysis.

2.1.3 Mixed Boolean-Arithmetic

Zhou et al. propose transformations over Boolean-
arithmetic algebras to hide constants by turning them
into more complex, but semantically equivalent expres-
sions, so called MBA expressions [14, 63]. In Section 6.2,
we provide details on their proposal of MBA expressions
and show how our approach is still able to simplify them.

2.2 Trace Simplification

Due to the complexity of static analysis of obfuscated
code, many deobfuscation approaches proposed recently
make use of dynamic analysis [13,19,19,53,62]. Notably,
they operate on execution traces that record instruction
addresses and accompanying metadata, e. g., register con-
tent, along a concrete execution path of a program. Sub-
sequently, trace simplification is performed to strip the
obfuscation layer and simplify the underlying code. De-
pending on the approach, multiple traces are used for sim-
plification or one single trace is reduced independently.

Coogan et al. [13] propose value-based dependence
analysis of a trace in order to track the flow of values
into system calls using an equational reasoning system.
This allows them to reduce the trace to those instructions
relevant to the previously mentioned value flow.

Graziano et al. [19] mainly apply standard compiler
transformations such as dead code elimination or arith-
metic simplifications to reduce the trace.

Yadegari et al. [62] use bit-level taint analysis to iden-
tify instructions relevant to the computation of outputs.
For subsequent simplification, they introduce the notion
of quasi-invariant locations with respect to an execution.
These are locations that hold the same value at every use
in the trace and can be considered constants when per-
forming constant propagation. Similarly, they use several
other compiler optimizations and adapt them to make use

646 26th USENIX Security Symposium USENIX Association

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Figure 2: Illustration of a single MCTS round (taken from
Browne et al. [5]).

of information about quasi-invariance to prevent over-
simplification.

2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a stochastic, best-
first tree search algorithm that directs the search towards
an optimal decision, without requiring much domain
knowledge. The algorithm builds a search tree through
reinforcement learning by performing random simula-
tions that estimate the quality of a node [5]. Hence,
the tree grows asymmetrically. MCTS has had sig-
nificant impact in artificial intelligence for computer
games [16, 35, 49, 56], especially in the context of Com-
puter Go [17, 54].

In an MCTS tree, each node represents a game state; a
directed link from a parent node to its child node repre-
sents a move in the game’s domain. The core algorithm
iteratively builds the decision tree in four main steps that
are also illustrated in Figure 2: (1) The selection step
starts at the root node and successively selects the most-
promising child node, until an expandable leaf (i. e., a
non-terminal node that has unvisited children) is reached.
(2) Following, one or more unvisited child nodes are
added to the tree in the expansion step. (3) In the sim-
ulation step, node rewards are determined for the new
nodes through random playouts. For this, consecutive
game states are randomly derived until a terminal state
(i. e., the end of the game) is reached; the game’s outcome
is represented by a reward. (4) Finally, the node rewards
are propagated backwards through the selected nodes to
the root in the backpropagation step. The algorithm ter-
minates if either a specified time/iteration limit is reached
or an optimal solution is found [5, 8].

Selecting the most-promising child node can be treated
as a so called multi-armed bandit problem, in which a
gambler tries to maximize the sum of rewards by choosing
one out of many slot machines with an unknown probabil-
ity distribution. Applied to MCTS, the Upper Confidence

Bound for Trees (UCT) [5,17,29] provides a good balance
between exploration and exploitation. It is obtained by

X j +C

√
lnn
n j

, (1)

where X j represents the average reward of the child
node j, n the current node’s number of visits, n j the visits
of the child node and C the exploration constant. The
average reward is referred to as exploitation parameter:
if C is decreased, the search is directed towards nodes
with a higher reward. Increasing C, instead, leads to an
intensified exploration of nodes with few simulations.

2.4 Simulated Annealing
Simulated Annealing is a stochastic search algorithm that
has been used to effectively solve NP-hard combinatorial
problems [27]. The main idea of Simulated Annealing is
to approximate a global optimum by iteratively improving
an initial candidate and exploring the local neighborhood.
To avoid a convergence to local optima, the search is
guided by a falling temperature T that decreases the prob-
ability of accepting worse candidates over time [25]; in
the following, we assume that a falling temperature de-
pends on a decreasing loop counter.

Figure 3: Simulated Annealing approximates a global
optimum (the darkest area in the map).

Figure 3 illustrates this process on the example of find-
ing the darkest area in a given map. Starting in an initial
state (s0), the algorithm always accepts a candidate that
has a better score than the current one (green arrows). If
the score is worse, we accept the worse candidate with
some probability (the red arrow from s2 to s3) that de-
pends on the temperature (loop counter) and how much
worse the candidate is. The higher the temperature, the
more likely the algorithm accepts a significantly worse
candidate solution. Otherwise, the candidate is discarded
(e. g., the crossed out red arrow at s4); in this case, we pick
another one in the local neighborhood. This allows the
algorithm to escape from local optima while the tempera-
ture is high; for low temperatures (loop counters closer to
0), it mainly accepts better candidate solutions. The algo-
rithm terminates after a specified number of iterations.

USENIX Association 26th USENIX Security Symposium 647

Figure 4: Dissecting a given trace (a) into several trace
windows (b). The trace windows can be used to recon-
struct a (possibly disconnected) control-flow graph (c).

3 Approach

Given an instruction trace, we dissect the instruction trace
into trace windows (i. e., subtraces) and aim at learning
their high-level semantics which can be used later on
for further analysis. In the following, we describe our
approach which is divided into three distinct parts:

1. Trace Dissection. The instruction trace is partitioned
into unique sequences of assembly instructions in a
(semi-)automated manner.

2. Random Sampling. We derive random input-output
pairs for each trace window. These pairs describe
the trace window’s semantics.

3. Program Synthesis. Expressions that map all pro-
vided inputs to their corresponding outputs are syn-
thesized.

3.1 Trace Dissection

The choice of trace window boundaries highly impacts
later analysis stages. Most notably, it affects synthesis
results: if a trace window ends at an intermediary com-
putation step, the synthesized formula is not necessarily
succinct or meaningful at all, as it includes spurious se-
mantics.

Yet, we note how trace dissection of ROP chains and
VM handlers lends itself to a simple heuristic. Namely,
we split traces at indirect branches. In the ROP case, this
describes the transition between two gadgets (commonly,
on a ret instruction), whereas for VM handlers it distin-
guishes the invocation of the next handler (cf. Section 6.3).
Figure 4 illustrates the approach. Given concrete trace
window boundaries, we can reconstruct a control-flow
graph consisting of multiple connected components. A
trace window then describes a particular path through a
connected component.

3.2 Random Sampling
The goal of random sampling is to derive input-output
relations that describe the semantics of a trace window.
This happens in two steps: First, we determine the inputs
and outputs of the trace window. Then, we replace the
inputs with random values and obverse the outputs.

Generally speaking, we consider register and memory
reads as inputs and register and memory writes as outputs.
For inputs, we apply a read-before-write principle: inputs
are only registers/memory locations that are read before
they have been written; for outputs, we consider the last
writes of a register/memory location as output.

1 mov rax , [rbp + 0x8]
2 add rax , rcx
3 mov [rbp + 0x8], rax
4 add [rbp + 0x8], rdx

Following this principle, the code above has three in-
puts and two outputs: The inputs are the memory read M0
in line 1, rcx (line 2) and rdx (line 4). The two outputs
are o0 (line 2) and o1 (line 4).

In the next step, we generate random values and ob-
verse the I/O relationship. For instance, we obtain the
outputs (7,14) for the input tuple (2,5,7); for the inputs
(1,7,10), we obtain (8,18).

By default, we use register locations as well as memory
locations as inputs and outputs. However, we support the
option to reduce the inputs and outputs to either register or
memory locations. For instance, if we know that registers
are only used for intermediate results, we may ignore
them since it reduces the complexity for the synthesis.

3.3 Synthesis
This section demonstrates how we synthesize the seman-
tics of assembly code; we discuss the inner workings of
our synthesis approach in the next section.

After we obtained the I/O samples, we combine the
different samples and synthesize each output separately.
These synthesis instances are mutually independent and
can be completely parallelized.

To exemplify, for the I/O pairs above, we search an
expression that transforms (2,5,7) to 7 and (1,7,10) to 8
for o0; for o1, the expression has to map (2,5,7) to 14 and
(1,7,10) to 18. Then, the synthesizer finds o0 =M0+rcx
and o1 = M0 +rcx+ rdx.

4 Program Synthesis

In the last section, we demonstrated how we obtain I/O
samples from assembly code and apply program synthesis
to that context. This section describes our algorithm in
detail; we show how we find an expression that maps
all inputs to their corresponding outputs for all observed

648 26th USENIX Security Symposium USENIX Association

samples. We use Monte Carlo Tree Search, since it has
been proven to be very effective when working on infinite
decision trees without requiring much domain knowledge.

We consider program synthesis as a single-player game
whose purpose is to synthesize an expression whose input-
output behavior is as close as possible to given I/O sam-
ples. In essence, we define a context-free grammar that
consists of terminal and non-terminal symbols. (Partially)
derived words of the grammar are game states; the gram-
mar’s production rules represent the moves of the game.
Terminal nodes are expressions that contain only terminal
symbols; these are end states of the game.

Given a maximum number of iterations and I/O sam-
ples, we iteratively apply the four MCTS steps (cf. Sec-
tion 2.3), until we find a solution or we reach the timeout.
Starting with a non-terminal expression as root node, we
select the most-promising expandable node. A node is
expandable, if there still exist production rules that have
not been applied to this node. We choose a production
rule randomly and expand the selected node. To evaluate
the quality of the new node, we perform a random play-
out: First, we randomly derive a terminal expression by
successively applying random production rules. Then, we
evaluate the expressions based on the inputs from the I/O
pairs and compare the output similarity. The similarity
score is the node reward. A reward of 1 ends the synthe-
sis, since the input-output behavior is the same for the
provided samples. Finally, we propagate the reward back
to the root.

In the following, we give details on node selection, our
grammar, random playouts and backpropagation. Finally,
we discuss the algorithm configuration and parameter
tuning. To demonstrate the different steps of our approach,
we use the following running example throughout this
section:

Example 1 (I/O relationship). Working with bit-vectors of
size 3 (i. e., modulo 23), we observe for an expression with
two inputs and one output the I/O relations: (2,2)→ 4
and (4,5)→ 1. A synthesized expression that maps the
inputs to the corresponding outputs is f (a,b) = a+b.

4.1 Node Selection
Since we have an infinite search space for program syn-
thesis, node selection must be a trade-off between ex-
ploration and exploitation. The algorithm has to ex-
plore different nodes such that several promising and
non-promising candidates are known. On the other hand,
it has to follow more promising candidates to find deeper
expressions. As described in Section 2.3, the UCT (cf.
Equation 1) provides a good balance between exploitation
and exploration for many MCTS applications.

However, we observed that it does not work for our use
case: if we set the exploration constant C to a higher value

(focus on exploration), it does not find deeper expressions;
if we set C to a lower value, MCTS gets lost in deep
expressions. To solve this problem, we use an adaption
of UCT that is known as Simulated Annealing UCT (SA-
UCT) [47]. The main idea of SA-UCT is to use the
characteristics of Simulated Annealing (cf. Section 2.4)
and apply it to UCT. SA-UCT is obtained by replacing
the exploration constant C by a variable T with

T =C
N− i

N
, (2)

where N is the maximum number of MCTS iterations
and i the current iteration. Then, SA-UCT is defined as

X j +T

√
lnn
n j

. (3)

T decreases over time, since N−i
N converges to 0 for

increasing values of i. As a result, MCTS places the
emphasis on exploration in the beginning; the more T
decreases, the more the focus shifts to exploitation.

4.2 Grammar
Game states are represented by sentential forms of a
context-free grammar that describes valid expressions
of our high-level abstraction. We introduce a terminal
symbol for each input (which corresponds to a variable
that stores this input) and each valid operator (e. g., ad-
dition or multiplication). For every data type that can be
computed we introduce one non-terminal symbol (in our
running example, we only use a single non-terminal value
U that represents an unsigned integer). The production
rules describe how we can derive expressions in our high-
level description. Since the sentential forms represent
partial expressions, we will use the term expression to
denote the (partial) expression that is represented by a
given sentential form. Sentences of the grammar are final
states in the game since they do not allow any further
moves (derivations). They represent expressions that can
be evaluated. We represent expressions in Reverse Polish
Notation (RPN).

Example 2. The grammar in our previous example has
two input symbols V = {a,b}, since each I/O sample has
two inputs. If the grammar supports addition and mul-
tiplication O = {+,∗}, there are four production rules:
R = {U →U U + |U U ∗ | a | b}. An unsigned integer
expression U can be mapped to an addition or multipli-
cation of two such expressions or a variable. The final
grammar is ({U},Σ =V ∪O,R,U).

Synthesis Grammar. Our grammar is designed
to synthesize expressions that represent the se-
mantics of bit-vector arithmetic, especially for

USENIX Association 26th USENIX Security Symposium 649

U

U U * U U +

U b + U U U + + U a +

U U * a + b a +

U U U * +

a b

Figure 5: An MCTS tree for program synthesis that grows
towards the most-promising node b a +, the right-most
leaf in layer 3.

the x86 architecture. For every data type (U8,
U16, U32 and U64), we define the set of operations
as O = {+,−,∗,/s,/,%s,%,∧,∨,⊕,�,�,�a,−1,¬,
sign_ext, zero_ext, extract, ++, 1}, where the
operations are binary addition, subtraction, multiplication,
signed/unsigned division, signed/unsigned remainder,
bitwise and/or/xor, logical left shift, logical/arithmetic
right shift as well as unary minus and complement.
The unary operations sign_ext and zero_ext extend
smaller data types to signed/unsigned larger data types.
Conversely, the unary operator extract transforms
larger data types into smaller data types by extracting the
respective least significant bits. Since the x86 architecture
allows register concatenation (e. g., for division), we
employ the binary operator ++ to concatenate two
expressions of the same data type. Finally, to synthesize
expressions such as increment and decrement, we use the
constant 1 as niladic operator. The input set V consists
of |V | = n variables, where n represents the number of
inputs.

Tree Structure. The sentential form U is the root node
of the MCTS tree. Its child nodes are other expressions
that are produced by applying the production rules to a
single non-terminal symbol of the parent. The expression
depth (referred to as layer) is equivalent to the number of
derivation steps, as depicted in Figure 5.

Example 3. The root node U is an expression of layer 0.
Its children are a, b, U U +, and U U ∗, where a and b are
terminal expressions of layer 1. Assuming that the right-
most U in an expression is replaced, the children of U U +
are U b+, U a+, U U U + +, and U U U ∗ +. To obtain
the layer 3 expression b a +, the following derivation
steps are applied: U ⇒U U +⇒U a +⇒ b a +.

To direct the search towards outer expressions, we re-
place the top-most-right-most non-terminal. If we, in-

+

U3*

U2U1

Figure 6: The left-most U in U3 U2 U1 ∗ + is the top-
most-right-most non-terminal in the abstract syntax tree.
(The indices are provided for illustrative purposes only.)

stead, substitute always the right-most non-terminal only,
then the search would be guided towards most-promising
subexpressions. If the expression is too nested, the syn-
thesizer would find the partial subexpression but not the
whole expression. The top-most-right-most derivation is
illustrated in Figure 6, which shows the abstract syntax
tree (AST) of an expression.

Example 4. The expression (U +(U ∗U)) is represented
as U U U ∗ +. If we successively replace the right-most
U, the algorithm is unlikely to find expressions such as
((a+b)+(b∗ (b∗a))), since it is directed into the subex-
pression with the multiplication. Instead, replacing the
top-most-right-most non-terminal directs the search to the
top-most addition and then explores the subexpressions.

4.3 Random Playout
One of the key concepts of MCTS are random playouts.
They are used to determine the outcome of a node; this
outcome is represented by a reward. In the first step,
we randomly apply production rules to the current node,
until we obtain a terminal expression. To avoid infinite
derivations, we set a maximum playout depth. This max-
imum playout depth defines how often a non-terminal
symbol can be mapped to rules that contain non-terminal
symbols; at the latest we reached the maximum, we map
non-terminals only to terminal expressions. This happens
in a top-most-right-most manner. Afterwards, we evaluate
the expression for all inputs from the I/O samples.

Example 5. Assuming a maximum playout depth of 2
and the expression U U ∗, the first top-most-right-most U
is randomly substituted with U U ∗, the second one with
U U +. After that, the remaining non-terminal symbols
are randomly replaced with variables: U U ∗⇒U U U ∗
∗⇒U U + U U ∗ ∗⇒ ·· · ⇒ a a + b a ∗ ∗. A random
playout for U U + is a b b + +.

For the I/O sample (2,2)→ 4, we evaluate g(2,2) = 0
for g(a,b) = ((a+a)∗(b∗a)) mod (28) and h(2,2) = 6
for h(a,b) = (a+(b+b)) mod 28.

We set terminal nodes to inactive after their evaluation,
since they already are end states of the game; there is
no possibility to improve the node’s reward by random
playouts. As a result, MCTS will not take these nodes

650 26th USENIX Security Symposium USENIX Association

into account in further iterations. The node’s reward is
the similarity of the evaluated expressions and the out-
puts from the I/O samples. We describe in the following
section how to measure the similarity to the outputs.

4.4 Measuring Similarity of Outputs
To measure the similarity of two outputs, we compare val-
ues with different metrics: arithmetic distance, Hamming
distance, count leading zeros, count trailing zeros, count
leading ones and count trailing ones. While the numeric
distance is a reliable metric for arithmetic operations, it
does not work well with overflows and bitwise operations
(e. g., xor and shifts). In turn, the Hamming distance ad-
dresses these operations since it states in how many bits
two values differ. Finally, the leading/trailing zeros/ones
are strong indicators that two values are in the same range.
We scale each result between a value of 0 and 1. Since the
different metrics compensate each other, we set the total
similarity reward to the average reward of all metrics.

Example 6. Considering I/O pair (2,2)→ 4, the out-
put similarities for g and h (as defined in Example 5)
are similarity(4,0) and similarity(4,6). Limiting to the
metrics of Hamming distance and count leading ze-
ros (clz), we obtain hamming(4,0) = hamming(4,6) =
0.67, clz(4,0) = 0 and clz(4,6) = 1.0. Therefore, the
average similarities are similarity(4,0) = 0.335 and
similarity(4,6) = 0.835. Related to the random play-
outs, the evaluated node U U + has a higher reward
than U U ∗.

During a random playout, we calculate the similarity
for all I/O samples. The final node reward is the average
score of all similarity rewards. A reward of 1 finishes pro-
gram synthesis, since the evaluated expression produces
exactly the outputs from the I/O samples.

4.5 Backpropagation
After obtaining a score by random playout, we do the
following for the selected node and all its parents, up to
the root: (1) We update the node’s average reward. This
reward is averaged based on the node’s and its successors’
total number of random playouts. (2) If the node is fully
expanded and its children are all inactive, we set the node
to inactive. (3) Finally, we set the current node to its
parent node.

4.6 Expression Simplification
Since MCTS performs a stochastic search, synthesized ex-
pressions are not necessary in their shortest form. There-
fore, we apply some basic standard expression simplifi-
cation rules. For example, if the synthesizer constructs

integer values as ((1� 1)� (1 + (1� 1))), we can
reduce them to the value 16.

4.7 Algorithm Configuration

Two main factors define the algorithm’s success that can-
not be influenced by the user: the number of input vari-
ables and the complexity (e. g., depth) of the expression
to synthesize. Contrary, there exist four parameters that
can be configured by a user to improve the effectiveness
and speed: the initial SA-UCT value, the number of I/O
samples, the maximum number of MCTS iterations and
the maximum playout depth.

The SA-UCT parameter T configures the trade-off be-
tween exploration and exploitation and depends on the
maximum number of MCTS iterations; if the maximum
number of MCTS iterations is low, the algorithm focuses
on exploiting promising candidates within a small period
of time. The same holds for small initial values of T .

A large number of variables or a higher expression
depth requires more MCTS iterations. Besides the maxi-
mum number of MCTS iterations, the maximum playout
depth provides more accuracy since it is more probable
to hit deeper expressions or more influencing variables
with deeper playouts. On the other hands, deeper playouts
have an impact on the execution time.

Since random playouts are performed for every node
and for every I/O pair, the number of I/O samples has a
significant impact on the execution time. In addition, it
effects the number of false positives, since there are less
expressions that have the same I/O behavior for a larger
number of I/O samples. Finally, the MCTS synthesis is
more precise since the different node rewards are expected
to be informative.

Since the search space for finding good algorithm con-
figurations for different complexity classes is large, we
approximate an optimal solution by Simulated Annealing.
We present the details and results in Section 6.1.

5 Implementation

We implemented a prototype implementation of our ap-
proach in our tool Syntia, which is written in Python. For
trace generation and random sampling, we use the Uni-
corn Engine [43], a CPU emulator framework. To analyze
assembly code (e. g., trace dissection), we utilize the dis-
assembler framework Capstone [42]. Furthermore, we
use the SMT solver Z3 [36] for expression simplification.

Initially, Syntia expects a memory dump, a start and
an end address as input. Then, it emulates the program
and outputs the instruction trace. Then, the user has the
opportunity to define its own rules for trace dissection;
otherwise, Syntia dissects the trace at indirect control

USENIX Association 26th USENIX Security Symposium 651

Table 1: Initial Simulated Annealing configuration and
the parameter’s lower/upper bounds.

parameter initial lower bound upper bound

SA-UCT 1.0 0.7 2.0
MCTS iterations 2,000 500 50,000
I/O samples 30 10 60
playout depth 1 0 2

transfers. Additionally, the user has to decide if regis-
ter and/or memory locations are used as inputs/outputs
and how many I/O pairs shall be sampled. Syntia traces
register and memory modifications in each trace window,
derives the inputs and outputs and generates I/O pairs by
random sampling. The last step can be parallelized for
each trace window. Finally, the user defines the synthe-
sis parameters. Syntia creates a synthesis tasks for each
(trace window, output) pair. The synthesis tasks are per-
formed in parallel. The synthesis results are simplified by
Z3’s term-rewriting engine.

6 Experimental Evaluation

In the following, we evaluate our approach in three areas
of application. The experiments have been evaluated on a
machine with two Intel Xeon E5-2667 CPUs (in total, 12
cores and 24 threads) and 96 GiB of memory. However,
we never have used more than 32 GiB of memory even
though parallel I/O sampling for many trace windows can
be memory intensive; synthesis itself never used more
than 6 GiB of memory.

6.1 Parameter Choice
As described in Section 4.7, we approximate an optimal
algorithm configuration with Simulated Annealing. To
compute preferably representative results, we generate a
set of 1,200 randomly generated expressions. We divide
this set into three classes with 400 expressions each; to
prevent overfitting the parameters on a fixed set of inputs,
the experiments of each class are performed with distinct
input samples.

In each iteration, Simulated Annealing synthesizes the
1,200 expressions under the same configuration. We set a
timeout of 120 seconds for each synthesis task and prune
non-successful tasks by a constant factor of the timeout.
As a result, Simulated Annealing optimizes towards a high
success rate for synthesis tasks and a minimal average
time. Table 1 lists the initial algorithm configuration and
the parameter boundaries.

We aim at determining optimal parameters for different
complexity classes. Classes are distinguished by the num-
ber of variables and by the expression’s layer. Table 2
illustrates the final configurations for 12 different com-

plexity classes after 50 Simulated Annealing iterations.
While the I/O samples and the playout depth are mostly in
a similar range (0 and 20), there is a larger scope for the
SA-UCT parameter and the maximum number of MCTS
iterations. Especially for higher complexity classes, this
is due to the optimization towards a high success rate
within 120 seconds. The latter parameters strive towards
larger values without this timeout.

Generally, the parameter configurations set a focus on
exploration instead of exploitation. We follow this obser-
vation and adapt the configuration based on our problem
statements. To describe a configuration, we provide a
configuration vector of the form (SA-UCT, #iter, #I/O,
PD).

6.2 Mixed Boolean-Arithmetic

Zhou et al. proposed the concept of MBA expressions [63].
By transforming simpler expressions and constants into
MBA expressions over Boolean-arithmetic algebras, they
can generate semantically-equivalent, but much more
complex code which is arguably hard to reverse engi-
neer. Effectively, this obfuscating transformation allows
them to hide formulas and constants in plain code. In
their paper, they define a Boolean-arithmetic algebra as
follows:

Definition 1 (Boolean-arithmetic algebra [63]). With
n a positive integer and B = {0,1}, the algebraic
system (Bn,∧,∨,⊕,¬,≤,≥,>,<,≤s,≥s,>s,<s, 6=,=,
�s,�,�,+,−, ·), where �,� denote left and right
shifts, · (or juxtaposition) denotes multiply, and signed
compares and arithmetic right shift are indicated by s, is
a Boolean-arithmetic algebra (BA-algebra), BA[n]. n is
the dimension of the algebra.

Specifically, they highlight how BA[n] includes,
amongst others, the Boolean algebra (Bn,∧,∨,¬) as well
as the integer modular ring Z/(2n). As a consequence,
Mixed Boolean-Arithmetic (MBA) expressions over Bn

are hard to simplify in practice. In general, we note that
reducing a complex expression to an equivalent, but sim-
pler one by, e. g., removing redundancies, is considered
NP-hard [31].

Zhou et al. represent MBA expressions as polynomials
over BA[n]. While polynomial MBA expressions are
conceptually not restricted in terms of complexity, Zhou
et al. define linear MBA expressions as those polynomials
with degree 1. In particular, f (x,y) = x− (x⊕ y)−2(x∨
y)+12564 is a linear MBA expression, whereas f (x,y) =
x+9(x∨ y)yx3 is not.

Implementation in Tigress. In practice, MBA expres-
sions are used in the Tigress C Diversifier/Obfuscator by

652 26th USENIX Security Symposium USENIX Association

Table 2: Parameter choices for different complexity classes that depend on the expression layer and the number of
variables. The parameters are the SA-UCT parameter (SA), the maximum number of MCTS iterations (# iter), the
number of I/O samples (# I/O) and the playout depth (PD).

variables

2 5 10 20

layer SA # iter # I/O PD SA # iter # I/O PD SA # iter # I/O PD SA # iter # I/O PD

3 1.42 40,569 20 0 1.55 32,375 17 0 1.74 42,397 20 1 1.38 28,089 18 1
5 1.84 35,399 14 0 1.11 28,792 23 0 1.29 27,365 23 0 0.92 34,050 12 0
7 1.25 28,363 20 0 1.01 30,838 23 0 1.23 15,285 22 0 1.42 11,086 22 0

Collberg et al. [9] which uses the technique to encode inte-
ger variables and expressions in which they are used [11].
Further, Tigress also supports common arithmetic encod-
ings to increase an expression’s complexity, albeit not
based on MBAs [10].

For example, the rather simple expression x+ y+ z is
transformed into the layer 23 expression (((x⊕y)+((x∧
y)� 1))∨ z)+ (((x⊕ y)+ ((x∧ y)� 1))∧ z) using its
arithmetic encoding option. In a second transformation
step, Tigress encodes it into a linear MBA expression of
layer 383 (omitted due to complexity). Such expressions
are hard to simplify symbolically.

Evaluation Results. We evaluated our approach to sim-
plify MBA expressions using Syntia. As a testbed, we
built a C program which calls 500 randomly generated
functions. Each of these random functions takes 5 in-
put variables and returns an expression of layer 3 to 5.
Then, we applied the arithmetic encoding provided by
Tigress, followed by the linear MBA encoding. The re-
sulting program contained expressions of up to 2,821
layers, the average layer being 156. The arithmetic encod-
ing is applied to highlight that our approach is invariant
to the code’s increased symbolic complexity and is only
concerned with semantical complexity.

Based on a concrete execution trace it can be observed
that the 500 functions use, on average, 5 memory inputs
(as parameters are passed on the stack) and one register
output (the register containing the return value). Table 3
shows statistics for the analysis run using the configura-
tion vector (1.5,50000,50,0). The first two components
indicate a strong focus on exploration in favor of exploita-
tion; due to the small number of synthesis tasks, we used
50 I/O samples to obtain more precise results.

The sampling phases completed in less than two min-
utes. Overall, the 500 synthesis tasks were finished
in about 34 minutes, i. e., in 4.0 seconds per expres-
sion. We were able to synthesize 448 out of 500 expres-
sions (89.6%). The remaining expressions are not found
due to the probabilistic nature of our algorithm; after 4
subsequent runs, we synthesized 489 expressions (97.8%)
in total.

Table 3: Trace window statistics and synthesis perfor-
mance for Tigress (MBA), VMProtect (VMP), Themida
(flavor Tiger White, TM), and ROP gadgets.

MBA VMP TM ROP

#trace windows 500 12,577 2,448 78
#unique windows 500 449 106 78
#instructions per window 116 49 258 3
#inputs per window 5 2 15 3
#outputs per window 1 2 10 2
#synthesis tasks 500 1,123 1,092 178

I/O sampling time (s) 110 118 60 17
overall synthesis time (s) 2,020 4,160 9,946 829
synthesis time per task (s) 4.0 3.7 9.1 4.7

To get a better feeling for this probabilistic behavior, we
compared the cumulative numbers of synthesized MBA
expressions for 10 subsequent runs. Figure 7 shows the
results averaged over 15 separate experiments. On aver-
age, the first run synthesizes 89.6% (448 expressions) of
the 500 expressions. A second run yields 22 new expres-
sions (94.0%), while a third run reveals 10 more expres-
sions (96.0%). While converging to 500, the number of
newly synthesized expressions decreases in subsequent
runs. Comparing the fifth and the eighth run, we only
found 5 new expressions (from 489 to 494). After the
ninth run, Syntia synthesized 495 (99.0%) of the MBA
expressions.

6.3 VM Instruction Handler
As introduced in Section 2.1.1, an instruction handler of
a Virtual Machine implements the effects of an atomic in-
struction according to the custom VM-ISA. It operates on
the VM context and can perform arbitrarily complex tasks.
As handlers are heavily obfuscated, manual analysis of a
handler’s semantics is a time-consuming task.

Attacking VMs. When faced with virtualization-based
obfuscations, an attacker typically has two options. For
one, she can analyze the interpreter and, for each han-
dler, extract all information required to re-translate the
bytecode back to native instruction. Especially in face of
handler duplication and bytecode blinding, this requires

USENIX Association 26th USENIX Security Symposium 653

0 2 4 6 8 10
0

100

200

300

400

500

synthesis runs

#
sy

nt
he

si
ze

d
ex

pr
es

si
on

s

Figure 7: Subsequent synthesis runs increase the number
of synthesized MBA expressions. Each point represents
the average cumulative number of synthesized expres-
sions from 15 separate experiments.

her to precisely capture all effects produced by the han-
dlers. This includes both the high-level semantics with
regard to input and output variables as well as the indi-
vidual unblinding routines. In his paper, Rolles discusses
how this type of attack requires complete understanding
of the VM and therefore has to be repeated for each virtu-
alization obfuscator [44]. Thus, we note that this attack
does not lend itself easily to full automation. Another ap-
proach is to perform analyses on the bytecode level. The
idea is that while an attacker cannot learn the full seman-
tics of the original code, the analysis of the interaction
of handlers itself reveals enough information about the
underlying code. This allows the attacker to skip details
like bytecode blinding as she only requires the high-level
semantics of a handler. Sharif et al. successfully mounted
such an attack to recover the CFG of the virtualized func-
tion [53], but do not take semantics other than virtual
instruction pointer updates into account.

We recognize the latter approach as promising and note
how Syntia allows us to automatically extract the high-
level semantics of arithmetical and logical instruction
handlers. This is achieved by operating on an execution
trace through the interpreter and simplify its individual
handlers—as distinguished by trace window boundaries—
using program synthesis. Especially, we highlight how ob-
taining the semantics of one handler automatically yields
information about the underlying native code at all points
of the trace where this specific handler is used to encode
equivalent virtualized semantics.

Evaluation Setup. We evaluated Syntia to learn the
semantics of arithmetic and logical VM instruction han-
dlers in recent versions of VMProtect [58] (v3.0.9) and
Themida [38] (v2.4.5.0). To this end, we built a program
that covers bit-vector arithmetic for operand widths of 8,
16, 32, and 64 bit. Since we are interested in analyzing ef-
fects of the VM itself, using a synthetic program does not

distort our results. For verification, we manually reverse
engineered the VM layouts of VMProtect and Themida.
Note that the commercial versions of both protection sys-
tems have been used to obfuscate the program. These are
known to provide better obfuscation strength compared
to the evaluation versions.

We argue that our evaluation program is representative
of any program obfuscated with the respective VM-based
obfuscating scheme. As seen in Section 2.1.1, common
instructions map to a plethora of VM handlers. Conse-
quently, if we succeed in recovering the semantics of these
integral building blocks, we are at the same time able to
recover other variations of native instructions using these
handlers as well.

This motivates the design of our evaluation program,
which aims to have a wide coverage of all possible arith-
metic and logical operations. We note that this may not be
the case for real-world test cases, which may not trigger
all interesting VM handlers. To this extent, our evalua-
tion program is, in fact, more representative than, e. g.,
malware samples.

6.3.1 VMProtect

In its current version, VMProtect follows the Direct
Threaded Code design principle (cf. Section 2.1.1). Each
handler directly invokes the next handler based on the
address encoded directly in the instruction’s bytecode.
Hence, reconstructing the handlers requires an instruction
trace. Also, this impacts trace dissection: since VM han-
dlers dispatch the next handler, they end with an indirect
jump. Unsurprisingly, Syntia could automatically dissect
the instruction trace into trace windows that represent a
single VM handler. As evident from Table 3, there are
449 unique trace windows out of a total of 12,577 in the
instruction trace.

Further, VMProtect employs handler duplication. For
example, the 449 instruction handlers contain 12 instances
performing 8-bit addition, 11 instances for each of addi-
tion (for each flavor of 16-, 32-, 64-bit), nor (8-, 64-bit),
left and right shift (32-, 64-bit); amongst multiple others.
If Syntia is able to learn one instance in each group, it is
safe to assume that it will successfully synthesize the full
group, as supported by our results.

Similarly, the execution trace is made up of all possible
handlers and some of them occur multiple times. Hence,
if we correctly synthesize semantics for, e. g., a 64-bit
addition, this immediately yields semantics for 772 trace
windows (6.2% of the full trace, 32.0% of all arithmetic
and logical trace windows in the trace). Equivalent rea-
soning applies to 16-bit nor operations in our trace (3.6%
of the full trace, 18.8% of all arithmetic and logical trace
windows). In total, our results reveal semantics for 19.7%
of the full execution trace (2,482 out of 12,577 trace win-

654 26th USENIX Security Symposium USENIX Association

dows). Manual analysis suggests that the remaining trace
semantics mostly consists of control-flow handling and
stack operations. These are especially used when switch-
ing from the native to the VM context and amount for a
large part of the execution trace.

On average, an individual instruction handler consists
of 49 instructions. As VMProtect’s VM is stack-based,
binary arithmetic handlers pop two arguments from the
stack and push the result onto the stack. This tremen-
dously eases identification of inputs and outputs. There-
fore, we mark memory operands as inputs and outputs
and use the configuration vector (1.5,30000,20,0) for the
synthesis. The sampling phase finished in less than two
minutes. Overall, the 1,123 synthesis tasks completed
in less than an hour, which amounts to merely 3.7 sec-
onds per task. In total, in our first run, we automatically
identified 190 out of 196 arithmetical and logical han-
dlers (96.9%). The remaining 6 handlers implement 8-bit
divisions and shifts. Due to their representation in x86
assembly code, Syntia needs to synthesize more complex
expressions with nested data type conversions. As the
analysis is probabilistic in nature, we scheduled five more
runs which yielded 4 new handlers. Thus, we are able to
automatically pinpoint 98.9% of all arithmetic and logical
instruction handlers in VMProtect.

6.3.2 Themida

The protection solution Themida supports three basic VM
flavors, namely, Tiger, Fish, and Dolphin. Each flavor
can further be customized to use one of three obfuscation
levels, in increasing complexity: White, Red, and Black.
We note that related work on deobfuscation does not di-
rectly mention the exact configuration used for Themida.
In hopes to be comparable, we opted to use the default
flavor Tiger, using level White, in our evaluation. Unlike
VMProtect, Tiger White uses an explicit handler table
while inlining the dispatcher routine; i. e., it follows the
Threaded Code design principle (cf. Section 2.1.1). Con-
sequently, trace dissection again yields one trace window
per instruction handler. Even though the central handler
table lists 1,111 handlers, we identified 106 unique trace
windows along the concrete execution trace.

Themida implements a register-based architecture and
stores intermediate computations in one of many register
available in the VM context. This, in turn, affects the
identification of input and output variables. While in the
case of VMProtect, inputs and outputs are directly taken
from two slots on the stack, Themida has a significantly
higher number of potential inputs and outputs (i. e., all
virtual registers in the VM context, 10 to 15 in our case).

Tiger White supports handlers for addition, subtraction,
multiplication, logical left and right shift, bitwise oper-
ations and unary subtraction; each for different operand

widths. In contrast to VMProtect, handlers are neither
duplicated nor do they occur multiple times in the execu-
tion trace. Hence, the trace itself is much more compact,
spanning 2,448 trace windows in total; roughly 5 times
shorter than VMProtect’s. Still, Themida’s handlers are
much longer, with 258 instructions on average.

We ran the analysis using the configuration vector
(1.8,50000,20,0). Due to the higher number of in-
puts, this configuration—in comparison to the previous
section—sets a much higher focus on exploration as indi-
cated by higher values chosen for the first two parameters.
Sampling finished in one minute, whereas the synthesis
phase took around 166 minutes. At 1,092 synthesis tasks,
this amounts to roughly 9.1 seconds per task. Eventually,
we automatically learned the semantics of 34 out of 36
arithmetic and logical handlers (94.4%). The remaining
handlers (8-bit subtraction and logical or) were not found
as we were unable to complete the sampling phase due to
crashes in Unicorn engine.

6.4 ROP Gadget Analysis

We further evaluated Syntia on ROP gadgets, specifically,
on four samples that were thankfully provided by De-
bray [62]. They implement bubble sort, factorials, Fi-
bonacci, and matrix multiplication in ROP. To have a
larger set of samples, we also used a CTF challenge [41]
that has been generated by the ROP compiler Q [51] and
another Fibonacci implementation that has been generated
with ROPC [39].

Syntia automatically dissected the instruction traces
into 156 individual gadgets. Since many gadgets use
exactly the same instructions, we unified them into 78
unique gadgets. On average, a gadget consists of 3 instruc-
tions with 3 inputs and 2 outputs (register and memory
locations).

Due to the small numbers of inputs and synthesis tasks,
we chose the configuration vector (1.5,100000,50,0) that
sets a very strong focus on exploration while accepting
a higher running time. Especially, we experienced both
effects for the maximum number of MCTS iterations.

Syntia synthesized partial semantics for 97.4% of the
gadgets in less than 14 minutes; in total, we were suc-
cessful in 163 out of the 178 (91.5%) synthesis tasks.
Our synthesis results include 58 assignments, 17 binary
additions, 5 ternary additions, 4 unary minus, 4 binary
subtractions, 4 register increments/decrements, 2 binary
multiplications and 1 bitwise and. In addition, we found
68 stack pointer increments due to ret statements. The
results do not include larger constants or operations such
as ror as they are not part of our grammar.

USENIX Association 26th USENIX Security Symposium 655

7 Discussion

In the following, we discuss different aspects of program
synthesis for trace simplification and MCTS-based pro-
gram synthesis. Furthermore, we point out limitations of
our approach as well as future work.

Program Synthesis for Trace Simplification. Current
research on deobfuscation [13, 53, 61, 62] operates on
instruction traces and uses a mixed approach consisting
of symbolic execution [61] and taint analysis [60]; two
approaches that require a precise analysis of the under-
lying code. While techniques exist that defeat taint anal-
ysis [6, 48], recent work shows that symbolic execution
can similarly be attacked [2].

Program synthesis is an orthogonal approach that oper-
ates on a purely semantical level as opposed to (binary)
code analysis; it is oblivious to the underlying code con-
structs. As a result, syntactical aspects of code complexity
such as obfuscation or instruction count do not influence
program synthesis negatively. It is merely concerned with
the complexity of the code’s semantics. The only excep-
tion where code-level artifacts matter is the generation
of I/O samples; however, this can be realized with small
overhead compared to regular execution time using dy-
namic binary instrumentation [37, 40].

Commonly, instruction traces contain repetitions of
unique trace windows that can be caused by loops or
repeated function calls to the same function. By synthe-
sizing these trace windows, the synthesized semantics
pertain for all appearances on the instruction trace; the
more frequently these trace windows occur in the trace,
the higher the percentage of known semantics in the in-
struction trace. We stress how VM-based obfuscation
schemes do this to the extreme: a relatively small number
of unique trace windows are used over the whole trace.

In general, the synthesis results may not be precise se-
mantics since we approximate them based on I/O samples.
If these do not reflect the full semantics, the synthesis
misses edge cases. For instance, we sometimes cannot
distinguish between an arithmetic and a logical right shift
if the random inputs are no distinguishing inputs. We
point out that this is not necessarily a limitation, since a
human analyst might still get valuable insights from the
approximated semantics.

As future work, we consider improving trace simplifi-
cation by a stratified synthesis approach [23]. The main
idea is to incrementally synthesize larger parts of the in-
struction trace based on previous results and successively
approximate high-level semantics of the entire trace. Fur-
ther, we note that the work by Sharif et al. [53] is comple-
mentary to our synthesis approach and would also allow
us to identify control flow. Likewise, extending the gram-

mar by control-flow operations is another viable approach
to tackle this limitation.

MCTS-based Program Synthesis. Compared to SMT-
based program synthesis, we obtain candidate solutions,
even if the synthesizer does not find an exact result. This
is particularly beneficial for applications such as deob-
fuscation, since a human analyst can sometimes infer the
full semantics. We decided to utilize MCTS for program
synthesis since it has been proven very effective when
operating on large search trees without domain knowl-
edge. However, our approach is not limited to MCTS,
other stochastic algorithms are also applicable.

Drawn from the observations made in Section 6, we
infer that the MCTS approach is much more effective
with a configuration that focuses on exploration instead of
exploitation. The SA-UCT parameter ensures that paths
with a higher reward are explored in-depth in later stages
of the algorithm. We still try to improve exploration
strategies, for instance with Nested Monte Carlo Tree
Search [35] and Monte Carlo Beam Search [7].

Limitations. In general, limits of program synthesis
apply to our approach as well. Non-determinism and point
functions—Boolean functions that return 1 for exactly one
input out of a large input domain—cannot be synthesized
practically. This also holds for semantics that have strong
confusion and diffusion properties, such as cryptographic
algorithms. These are inherently very complex, non-linear
expressions with a deep nesting level. Our approach is
also limited by the choice of trace window boundaries;
ending a trace window in intermediate computation steps
may produce formulas that are not meaningful at all.

8 Related Work

We now review related work for program synthesis, Monte
Carlo Tree Search and deobfuscation. Furthermore, we
describe how our work fits into these research areas.

Program Synthesis. Gulwani et al. [22] introduced an
SMT-based program synthesis approach for loop-free pro-
grams that requires a logical specification of the desired
program behavior. Building on this, Jha et al. [24] re-
placed the specification with an I/O oracle. Upon gener-
ation of multiple valid program candidates, they derive
distinguishing inputs that are used for subsequent oracle
queries. They demonstrated their use case by simplifying
a string obfuscation routine of MyDoom. Godfroid and
Taly [18] used an SMT-based approach to learn the formal
semantics of CPU instruction sets; for this, they use the
CPU as I/O oracle.

656 26th USENIX Security Symposium USENIX Association

Schkufza et al. [50] proved that stochastic program
synthesis often outperforms SMT-based approaches. This
is mostly due to the fact that common SMT-based ap-
proaches effectively enumerate all programs of a given
size or prove their non-existence. On the other hand,
stochastic approaches focus on promising parts of the
search space without searching exhaustively. Schkufza
et al. use this technique for stochastic superoptimization
on the basis of their tool STOKE. Recent work by Heule
et al. [23] demonstrates a stratified approach to learn the
semantics of the x86-64 instruction set, based on STOKE.
Their main idea is to re-use synthesis results to synthe-
size more complex instructions in an iterative manner.
To the best of our knowledge, STOKE is the only other
stochastic synthesis tool that is able to synthesize low-
level semantics. By design, their code only produces Intel
x86 code.

In our case, stochastic techniques have additional prop-
erties that are not achieved by previous tools: we obtain
partial results that are often already “close” to a real solu-
tion and might be helpful for a human analyst who tries
to understand obfuscated code. Furthermore, we can en-
code arbitrary complex function symbols in our grammar
(e. g., complex encoding schemes or hash functions); a
characteristic that is not easily reproduced by SMT-based
approaches.

In the context of non-academic work, Rolles applied
some of the above mentioned SMT-based approaches to
reverse engineering and deobfuscation [45]. Amongst
others, he learned obfuscation rules by adapting peephole
superoptimization techniques [3] and extracted metamor-
phic code using an oracle-guided approach. In his recent
work, he performs SMT-based shellcode synthesis [46].

Monte Carlo Tree Search. MCTS has been widely
studied in the area of AI in games [16, 35, 49, 56]. Ruijl
et al. [47] combine Simulated Annealing and MCTS by
introducing SA-UCT for expression simplification. Lim
and Yoo [32] describe an early exploration on how MCTS
can be used for program synthesis and note that it shows
comparable performance to genetic programming. We
extend the research of MCTS-based program synthesis by
applying SA-UCT and introducing node pruning. For our
synthesis approach, we designed a context-free grammar
that learns the semantics of Intel x86 code.

Deobfuscation. Rolles provides an academic analysis
of a VM-based obfuscator and outlines a possible attack
on such schemes in general [44]. He proposes using
static analysis to re-translate the VM’s bytecode back into
native instructions. This, however, requires minute analy-
sis of each obfuscator and hence is time-consuming and
prone to minor modifications of the scheme. Kinder is

also concerned with (static) analysis of VMs [26]. Specif-
ically, he lifts a location-sensitive analysis to be usable
in presence of virtualization-based obfuscation schemes.
His work highlights how the execution trace of a VM,
while performing various computations, always exhibits
a recurring set of addresses. As seen in Section 6, our ap-
proach actually benefits from this side effect. In contrast,
Sharif et al. [53] analyze VMs in a dynamic manner and
record execution traces. In contrast to the work of Rolles,
their goal is not to re-translate, but to directly analyze the
bytecode itself. Specifically, they aim to reconstruct parts
of the underlying code’s control flow from the bytecode.
This approach is closest to our work as we are, in turn,
mostly concerned with arithmetic and logical semantics
of a handler.

More recent results include work by Coogan et al. [13]
as well as Yadegari et al. [62]. Both approaches seek to de-
obfuscate code based on execution traces by further mak-
ing use of symbolic execution and taint tracking. The for-
mer approach is focused on the value flow to system calls
to reduce a trace whereas Yadegari et al. propose a more
general approach and aim to produce fully deobfuscated
code. However, to counteract symbolic execution-based
deobfuscation approaches, Banescu et al. propose novel
obfuscating transformations that specifically target their
deficiencies [2]. For one, they propose a construct akin
to random opaque predicates [12] that deliberately ex-
plodes the number of paths through a function. A second
technique preserves program behavior of the obfuscated
program for specific input invariants only, effectively in-
creasing the input domains and thus the search space for
symbolic executors.

Guinet et al. present arybo, a framework to simplify
MBA expressions [20]. In essence, they perform bit-
blasting and use a Boolean expression solver that tries
to simplify the expression symbolically. Eyrolles [15]
describes a symbolic approach that uses pattern matching.
Furthermore, she suggests improvements of current MBA-
obfuscated implementations that impede these symbolic
deobfuscation techniques [14]. To this effect, we also
argue that symbolic simplification is inherently limited
by the complexity of the input expression. However, we
demonstrated that a synthesis-based approach allows fine-
tuned simplification, irrespective of syntactical complex-
ity, while producing approximate intermediate results.

9 Conclusion

With our prototype implementation of Syntia we have
shown that program synthesis can aid in deobfuscation
of real-world obfuscated code. In general, our approach
is vastly different in nature compared to proposed deob-
fuscation techniques and hence may succeed in scenarios
where approaches requiring precise code semantics fail.

USENIX Association 26th USENIX Security Symposium 657

Acknowledgments

We thank the reviewers for their valuable feedback. This
work was supported by the German Research Foundation
(DFG) research training group UbiCrypt (GRK 1817) and
by ERC Starting Grant No. 640110 (BASTION).

References
[1] ANDRIESSE, D., BOS, H., AND SLOWINSKA, A. Parallax: Im-

plicit Code Integrity Verification using Return-Oriented Program-
ming. In Conference on Dependable Systems and Networks (DSN)
(2015).

[2] BANESCU, S., COLLBERG, C., GANESH, V., NEWSHAM, Z.,
AND PRETSCHNER, A. Code Obfuscation against Symbolic Exe-
cution Attacks. In Annual Computer Security Applications Con-
ference (ACSAC) (2016).

[3] BANSAL, S., AND AIKEN, A. Automatic Generation of Peephole
Superoptimizers. In ACM Sigplan Notices (2006).

[4] BELL, J. R. Threaded Code. Communications of the ACM (1973).

[5] BROWNE, C. B., POWLEY, E., WHITEHOUSE, D., LUCAS,
S. M., COWLING, P. I., ROHLFSHAGEN, P., TAVENER, S.,
PEREZ, D., SAMOTHRAKIS, S., AND COLTON, S. A Survey
of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games (2012).

[6] CAVALLARO, L., SAXENA, P., AND SEKAR, R. Anti-Taint-
Analysis: Practical Evasion Techniques against Information Flow
based Malware Defense. Secure Systems Lab at Stony Brook
University, Tech. Rep (2007).

[7] CAZENAVE, T. Monte carlo beam search. IEEE Transactions on
Computational Intelligence and AI in Games (2012).

[8] CHASLOT, G. Monte-Carlo Tree Search. PhD thesis, Universiteit
Maastricht, 2010.

[9] COLLBERG, C., MARTIN, S., MYERS, J., AND NAGRA, J. Dis-
tributed Application Tamper Detection via Continuous Software
Updates. In Annual Computer Security Applications Conference
(ACSAC) (2012).

[10] COLLBERG, C., MARTIN, S., MYERS, J., AND ZIMMER-
MAN, B. Documentation for Arithmetic Encodings in
Tigress. http://tigress.cs.arizona.edu/transformPage/
docs/encodeArithmetic.

[11] COLLBERG, C., MARTIN, S., MYERS, J., AND ZIMMERMAN,
B. Documentation for Data Encodings in Tigress. http://
tigress.cs.arizona.edu/transformPage/docs/encodeData.

[12] COLLBERG, C., THOMBORSON, C., AND LOW, D. Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs. In ACM
Symposium on Principles of Programming Languages (POPL)
(1998).

[13] COOGAN, K., LU, G., AND DEBRAY, S. Deobfuscation
of Virtualization-obfuscated Software: A Semantics-Based Ap-
proach. In ACM Conference on Computer and Communications
Security (CCS) (2011).

[14] EYROLLES, N. Obfuscation with Mixed Boolean-Arithmetic Ex-
pressions: Reconstruction, Analysis and Simplification Tools. PhD
thesis, Université de Versailles Saint-Quentin-en-Yvelines, 2017.

[15] EYROLLES, N., GOUBIN, L., AND VIDEAU, M. Defeating MBA-
based Obfuscation. In ACM Workshop on Software PROtection
(SPRO) (2016).

[16] FINNSSON, H. Generalized Monte-Carlo Tree Search Extensions
for General Game Playing. In AAAI Conference on Artificial
Intelligence (2012).

[17] GELLY, S., KOCSIS, L., SCHOENAUER, M., SEBAG, M., SIL-
VER, D., SZEPESVÁRI, C., AND TEYTAUD, O. The Grand Chal-
lenge of Computer Go: Monte Carlo Tree Search and Extensions.
Communications of the ACM (2012).

[18] GODEFROID, P., AND TALY, A. Automated Synthesis of Sym-
bolic Instruction Encodings from I/O Samples. In ACM SIGPLAN
Notices (2012).

[19] GRAZIANO, M., BALZAROTTI, D., AND ZIDOUEMBA, A. ROP-
MEMU: A Framework for the Analysis of Complex Code-Reuse
Attacks. In ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS) (2016).

[20] GUINET, A., EYROLLES, N., AND VIDEAU, M. Arybo: Ma-
nipulation, Canonicalization and Identification of Mixed Boolean-
Arithmetic Symbolic Expressions. In GreHack Conference (2016).

[21] GULWANI, S. Dimensions in Program Synthesis. In Proceedings
of the 12th international ACM SIGPLAN symposium on Principles
and practice of declarative programming (2010).

[22] GULWANI, S., JHA, S., TIWARI, A., AND VENKATESAN, R.
Synthesis of Loop-free Programs. ACM SIGPLAN Notices (2011).

[23] HEULE, S., SCHKUFZA, E., SHARMA, R., AND AIKEN, A. Strat-
ified synthesis: Automatically Learning the x86-64 Instruction
Set. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (2016).

[24] JHA, S., GULWANI, S., SESHIA, S. A., AND TIWARI, A. Oracle-
guided Component-based Program Synthesis. In ACM/IEEE 32nd
International Conference on Software Engineering (2010).

[25] KIM, D.-W., KIM, K.-H., JANG, W., AND CHEN, F. F. Unre-
lated Parallel Machine Scheduling with Setup Times using Simu-
lated Annealing. Robotics and Computer-Integrated Manufactur-
ing (2002).

[26] KINDER, J. Towards Static Analysis of Virtualization-Obfuscated
Binaries. In IEEE Working Conference on Reverse Engineering
(WCRE) (2012).

[27] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Opti-
mization by Simulated Annealing. Science (1983).

[28] KLINT, P. Interpretation Techniques. Software, Practice and
Experience (1981).

[29] KOCSIS, L., AND SZEPESVÁRI, C. Bandit based Monte-Carlo
Planning. In European Conference on Machine Learning (2006).

[30] KRAHMER, S. x86-64 Buffer Overflow Exploits and the Borrowed
Code Chunks Exploitation Technique, 2005.

[31] LIBERATORE, P. The Complexity of Checking Redundancy of
CNF Propositional Formulae. In International Conference on
Agents and Artificial Intelligence (2002).

[32] LIM, J., AND YOO, S. Field Report: Applying Monte Carlo Tree
Search for Program Synthesis. In International Symposium on
Search Based Software Engineering (2016).

[33] LU, K., XIONG, S., AND GAO, D. RopSteg: Program Steganog-
raphy with Return Oriented Programming. In ACM Conference on
Data and Application Security and Privacy (CODASPY) (2014).

[34] MA, H., LU, K., MA, X., ZHANG, H., JIA, C., AND GAO, D.
Software Watermarking using Return-Oriented Programming. In
ACM Symposium on Information, Computer and Communications
Security (ASIACCS) (2015).

[35] MARC, SEBAG, M., SILVER, D., SZEPESVÁRI, C., AND TEY-
TAUD, O. Nested Monte-Carlo Search. Communications of the
ACM (2012).

[36] MICROSOFT RESEARCH. The Z3 Theorem Prover. https://
github.com/Z3Prover/z3.

658 26th USENIX Security Symposium USENIX Association

http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeData
http://tigress.cs.arizona.edu/transformPage/docs/encodeData
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

[37] NETHERCOTE, N., AND SEWARD, J. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In ACM Sigplan
Notices (2007).

[38] OREANS TECHNOLOGIES. Themida – Advanced Windows Soft-
ware Protection System. http://oreans.com/themida.php.

[39] PAKT. ROPC: A Turing complete ROP compiler. https://
github.com/pakt/ropc.

[40] PEWNY, J., GARMANY, B., GAWLIK, R., ROSSOW, C., AND
HOLZ, T. Cross-architecture Bug Search in Binary Executables.
In IEEE Symposium on Security and Privacy (2015).

[41] PLAID CTF. ROP Challenge “quite quixotic chest”. https:
//ctftime.org/task/2305, 2016.

[42] QUYNH, N. A., DI, T. S., NAGY, B., AND VU, D. H. Capstone
Engine. http://www.capstone-engine.org.

[43] QUYNH, N. A., AND VU, D. H. Unicorn – The Ultimate CPU
Emulator. http://www.unicorn-engine.org.

[44] ROLLES, R. Unpacking Virtualization Obfuscators. In USENIX
Workshop on Offensive Technologies (WOOT) (2009).

[45] ROLLES, R. Program Synthesis in Reverse Engineer-
ing. http://www.msreverseengineering.com/blog/2014/12/
12/program-synthesis-in-reverse-engineering, 2014.

[46] ROLLES, R. Synesthesia: A Modern Approach to Shellcode
Generation. http://www.msreverseengineering.com/blog/
2016/11/8/synesthesia-modern-shellcode-synthesis-
ekoparty-2016-talk, 2016.

[47] RUIJL, B., VERMASEREN, J. A. M., PLAAT, A., AND VAN DEN
HERIK, H. J. Combining Simulated Annealing and Monte Carlo
Tree Search for Expression Simplification. In International Con-
ference on Agents and Artificial Intelligence (2014).

[48] SARWAR, G., MEHANI, O., BORELI, R., AND KAAFAR, D. On
the Effectiveness of Dynamic Taint Analysis for Protecting against
Private Information Leaks on Android-based Devices. Nicta
(2013).

[49] SCHADD, M. P., WINANDS, M. H., TAK, M. J., AND
UITERWIJK, J. W. Single-player Monte-Carlo Tree Search for
SameGame. Knowledge-Based Systems (2012).

[50] SCHKUFZA, E., SHARMA, R., AND AIKEN, A. Stochastic Su-
peroptimization. ACM SIGPLAN Notices (2013).

[51] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. Q:
Exploit Hardening Made Easy. In USENIX Security Symposium
(2011).

[52] SHACHAM, H. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In ACM
Conference on Computer and Communications Security (CCS)
(2007).

[53] SHARIF, M., LANZI, A., GIFFIN, J., AND LEE, W. Automatic
Reverse Engineering of Malware Emulators. In IEEE Symposium
on Security and Privacy (2009).

[54] SILVER, D., HUANG, A., MADDISON, C. J., GUEZ, A.,
SIFRE, L., VAN DEN DRIESSCHE, G., SCHRITTWIESER, J.,
ANTONOGLOU, I., PANNEERSHELVAM, V., LANCTOT, M.,
ET AL. Mastering the Game of Go with Deep Neural Networks
and Tree Search. Nature (2016).

[55] SONY DADC. SecuROM Software Protection. https://
www2.securom.com/Digital-Rights-Management.68.0.html.

[56] SZITA, ISTVÁN AND CHASLOT, GUILLAUME AND SPRONCK,
PIETER. Monte-Carlo Tree Search in Settlers of Catan. In Ad-
vances in Computer Games (2009).

[57] TAGES SAS. SolidShield Software Protection. https:
//www.solidshield.com/software-protection-and-
licensing.

[58] VMPROTECT SOFTWARE. VMProtect Software Protection. http:
//vmpsoft.com.

[59] VOGL, S., PFOH, J., KITTEL, T., AND ECKERT, C. Persistent
Data-only Malware: Function Hooks without Code. In Symposium
on Network and Distributed System Security (NDSS) (2014).

[60] YADEGARI, B., AND DEBRAY, S. Bit-level Taint Analysis. In
IEEE International Working Conference on Source Code Analysis
and Manipulation (2014).

[61] YADEGARI, B., AND DEBRAY, S. Symbolic Execution of Obfus-
cated Code. In ACM Conference on Computer and Communica-
tions Security (CCS) (2015).

[62] YADEGARI, B., JOHANNESMEYER, B., WHITELY, B., AND
DEBRAY, S. A Generic Approach to Automatic Deobfuscation of
Executable Code. In IEEE Symposium on Security and Privacy
(2015).

[63] ZHOU, Y., MAIN, A., GU, Y. X., AND JOHNSON, H. Information
Hiding in Software with Mixed Boolean-Arithmetic Transforms.
In International Workshop on Information Security Applications
(WISA) (2007).

USENIX Association 26th USENIX Security Symposium 659

http://oreans.com/themida.php
https://github.com/pakt/ropc
https://github.com/pakt/ropc
https://ctftime.org/task/2305
https://ctftime.org/task/2305
http://www.capstone-engine.org
http://www.unicorn-engine.org
http://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
http://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
https://www2.securom.com/Digital-Rights-Management.68.0.html
https://www2.securom.com/Digital-Rights-Management.68.0.html
https://www.solidshield.com/software-protection-and-licensing
https://www.solidshield.com/software-protection-and-licensing
https://www.solidshield.com/software-protection-and-licensing
http://vmpsoft.com
http://vmpsoft.com

