
Towards Automating Code-Reuse Attacks Using
Synthesized Gadget Chains

Moritz Schloegel, Tim Blazytko, Julius Basler,
Fabian Hemmer, and Thorsten Holz

Ruhr-Universität Bochum, Germany
firstname.lastname @rub.de

Abstract. In the arms race between binary exploitation techniques and
mitigation schemes, code-reuse attacks have been proven indispensable.
Typically, one of the initial hurdles is that an attacker cannot execute
their own code due to countermeasures such as data execution prevention
(DEP, W^X). While this technique is powerful, the task of finding and cor-
rectly chaining gadgets remains cumbersome. Although various methods
automating this task have been proposed, they either rely on hard-coded
heuristics or make specific assumptions about the gadgets’ semantics.
This not only drastically limits the search space but also sacrifices their
capability to find valid chains unless specific gadgets can be located. As
a result, they often produce no chain or an incorrect chain that crashes
the program. In this paper, we present SGC, the first generic approach to
identify gadget chains in an automated manner without imposing restric-
tions on the gadgets or limiting its applicability to specific exploitation
scenarios. Instead of using heuristics to find a gadget chain, we offload this
task to an SMT solver. More specifically, we build a logical formula that
encodes the CPU and memory state at the time when the attacker can
divert execution flow to the gadget chain, as well as the attacker’s desired
program state that the gadget chain should construct. In combination
with a logical encoding of the data flow between gadgets, we query an
SMT solver whether a valid gadget chain exists. If successful, the solver
provides a proof of existence in the form of a synthesized gadget chain.
This way, we remain fully flexible w.r.t. to the gadgets. In empirical
tests, we find that the solver often uses all types of control-flow transfer
instructions and even gadgets with side effects. Our evaluation shows that
SGC successfully finds working gadget chains for real-world exploitation
scenarios within minutes, even when all state-of-the-art approaches fail.

1 Introduction

Early exploitation techniques relied on code-injection attacks, where an attacker
injects shellcode into the memory space of an application and then executes it.
However, quickly established mitigations forced attackers to adapt. Especially
the introduction of the W^X policy (commonly referred to as data execution
prevention (DEP)) made the execution of injected code infeasible, as memory
is marked as either writable or executable. This forced attackers to develop

2 Schloegel, Blazytko, Basler, Hemmer, and Holz

novel exploitation techniques that reuse already existing code (e. g., return-to-
libc) [26, 30, 32]. As an additional line of defense, modern operating systems
randomize a program’s address space layout (ASLR). Still, a single information
leak or small, non-randomized parts of the executable often provide an attacker
the capability to mount their attack. In the past years, control-flow integrity
(CFI) [1] has gained popularity. This technique enforces the property that only
legitimate control-flow transitions inside a benign set required by the program
are performed. While greatly limiting the attacker’s freedom to chain arbitrary
code snippets, so-called code-reuse attacks are still feasible in practice [11, 24, 35].
In general, code-reuse attacks have been shown to be Turing complete [22,23].
Note that in practice, attackers often only need to disable W^X before they
can execute arbitrary shellcode in the context of the exploited program. This is
commonly achieved by chaining so-called gadgets, (short) sequences of instructions
ending with an indirect control-flow transfer such as ret [26]. Even medium-sized
programs contain thousands of gadgets, making the process of extracting and
finding a suitable combination cumbersome. Various techniques to automate the
process were proposed: Initial attempts used pattern-matching-based strategies to
identify a chain [20,21]; later approaches [2,8,17] make use of symbolic execution
to classify gadgets and identify undesirable side effects, e. g., writing values to
memory. However, even the most advanced approaches to date rely on various
heuristics to confine the large search space [11, 24, 35]. While sometimes effective,
pruning may lead to false negatives: these heuristics try to find generic chains to
work across many targets, but in some cases no such chain exists.

In this paper, we propose a novel method to find gadget chains efficiently
without pruning the search space. One category of tools that particularly excels
at finding solutions for decision problems involving a large search space are SMT
solvers [33]; they check if a (potentially large) set of logical formulas—so-called
constraints—can be satisfied [15]. By building a logical formula that describes
(1) the CPU and memory state before executing the first gadget, (2) the CPU
and memory state desired by the attacker, and (3) the data flow between gadgets,
we can model the gadget chain synthesis as a reachability problem and use an
SMT solver to decide it. This approach is similar to bounded model checking [27],
a software verification technique used to determine whether a system meets a
given set of requirements: it combines a set of assumptions that have to hold
before execution (preconditions) and a set of requirements that have to hold after
execution (postconditions) with a logical encoding of the program semantics and
then queries an SMT solver. If the solver returns SAT (satisfiable), it provides
a model representing a concrete variable assignment that satisfies the given
constraints. In our case, this implies that the solver successfully synthesized a
gadget chain. If the result is UNSAT (unsatisfiable), the SMT solver mathematically
proved that the constraints cannot be satisfied and, thus, no chain can exist for
the given set of gadgets.

We introduce the design and implementation of SGC, a generic approach
capable of automatically identifying gadget chains without relying on any clas-
sification or heuristics to prune the search space. At the same time, the logical

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 3

formula offers a framework to specify target-specific constraints. Our evaluation
demonstrates that SGC not only outperforms all state-of-the-art tools with regard
to finding gadget chains, but the synthesized chains always work in real-world
scenarios. For instance, we demonstrate how we can craft a gadget chain that
spawns a shell for a stack-based buffer overflow in dnsmasq: After defining the
concrete CPU state as preconditions, we encode the target state right before
executing the system call execve(&"/bin/sh", 0, 0); running SGC provides us
with a gadget chain spawning the shell without requiring any other information.
We further demonstrate that even complex constraints (e. g., the sum of all values
in the gadget chain must be equal to a specific value) can be satisfied by SGC.
In summary, our main contributions are:

– We introduce a generic approach to synthesize gadget chains in an automated
way based on bounded model checking. Our approach does not require
heuristics or pruning of the search space; instead, the SMT solver provides
a proof of existence in the form of a gadget chain or proves that no gadget
chain can be found for the given gadgets and constraints.

– We present the design and evaluation of our prototype SGC. We show that
it not only outperforms all state-of-the-art approaches, but also works in
real-world settings.

– Our approach provides unprecedented flexibility: SGC allows an attacker
to specify arbitrary constraints and, thus, model even complex or unusual
exploitation scenarios.

To foster further research in this area, we open-source SGC at https://github.com/
RUB-SysSec/gadget_synthesis.

2 Shortcomings of State-of-the-Art Approaches

In the following, we discuss state-of-the-art approaches from academia and
industry that can be used in practice to generate gadget chains automatically and
analyze their shortcomings in this regard (cf. Table 1). We find that existing tools
can be separated into two categories, based on their gadget chain generation:

Hardcoded Chaining Rules. Ropper [21] and ROPgadget [20] both fall
into this category. Their main task is to extract gadgets, but both require
hardcoded rules based on regular expressions to chain gadgets. While ROPgadget
only supports a single exploitation scenario (i. e., building a system call to
execve(&"/bin/sh\0", 0, 0)), Ropper allows system calls to mprotect as
well. As a result, these tools are inflexible in practice.

Symbolic Exploration. angrop [2] and ROPium [17] operate on an inter-
mediate representation of gadgets, which allows them to symbolically determine
side effects and perform a classification. To this end, gadgets are first lifted, then
analyzed, and chained together in the last step. The latter usually involves an
algorithm such as depth-first search (ROPium) or breadth-first search (angrop)
to identify a sequence of gadgets that fulfills the attacker’s specifications, such
as specific argument values. While vastly more flexible than approaches using

https://github.com/RUB-SysSec/gadget_synthesis
https://github.com/RUB-SysSec/gadget_synthesis

4 Schloegel, Blazytko, Basler, Hemmer, and Holz

Table 1: Features of different tools capable of automatically chaining gadgets.
SGC P-SHAPE angrop ROPium ROPgadget Ropper

supports chains without ret 3 7 7 3 3 3

no hardcoded chaining rules 3 3 3 3 7 7

no classification needed 3 7 7 7 7 7

supports arbitrary postconditions 3 7 7 7 7 7

hardcoded rules, these tools are no panacea. They still rely on a classification of
gadgets, and while they provide greater flexibility by allowing simple memory and
register constraints, they lack support for more elaborate constraints. P-SHAPE
by Follner et al. [8] also uses a symbolic exploration approach. However, it only
focuses on finding gadgets useful for constructing library calls. It does neither
provide a full gadget chain nor allows an attacker to specify any constraints.

Overall, all approaches lack flexibility; especially, they fail to support arbitrary
postconditions (cf. Table 1). Instead, they rely on a classification of gadgets and
pre-defined strategies to identify a gadget chain. Even when finding a chain, we
empirically observe that they often crash the targeted program, e. g., through
invalid memory accesses. Despite this, no tool makes any attempt at verifying
the correctness of the generated gadget chains.

3 Design

In the following, we present a gadget-agnostic design that does not perform
any pre-classification of gadgets while providing high flexibility by allowing to
specify arbitrary, complex constraints. The nature of our approach overcomes the
limitations of existing approaches. Most importantly, we can enforce an arbitrary
CPU register and memory state before and after the exploitation—our design will
identify a gadget chain facilitating the transition from the initial to the desired
state using any gadgets available, including such using jmp and call instructions.
To this end, our approach encodes the search of the gadget chain as a synthesis
problem that an SMT solver decides. More specifically, our design is based on
bounded model checking: preconditions and postconditions are represented by
the initial and desired CPU state, while a logical formula encodes the possible
gadget chain that facilitates the transition between both states.

Recall that bounded model checking is usually applied to a well-defined
unit of code, such as a function with specific conditions. The goal of bounded
model checking is to qualitatively assert that no diversion from the specified
postconditions is possible (i. e., any diversion implies a bug that must be fixed).
In other words, the goal is to find a counterexample violating the postconditions.
For the use case of synthesizing a gadget chain, the scenario is slightly different:
There is no well-defined unit of code such as a function, but a large number of
individual gadgets that can be executed in an arbitrary order. As a consequence,
we are not interested in knowing whether specific postconditions can be violated

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 5

(as this most certainly is the case given the number and nature of the gadgets);
instead, we are interested in whether there exists a chain of gadgets that satisfies
the postconditions. In other words, we task the SMT solver with finding a
satisfying assignment for preconditions ∧ gadget_chain ∧ postconditions. If the
solver finds such an assignment, the produced model contains concrete values for
all variables—including stack or other attacker-controlled buffers—which describe
the chain of gadgets. Thus, once a model is found, converting the values into a
chain becomes a trivial task. In the following, we present these steps in detail.

3.1 Gadgets

First, we must extract gadgets from the target program, which can then be further
processed. This step is independent of the subsequent encoding and is covered in
detail by previous works in this area [3,4,6, 9, 26]. As such, we omit it here for
brevity. Note that we do not require the gadget extraction to be exhaustive or
classify gadgets, as long as these sequences of instructions end with an indirect
control-flow transfer. As assembly instructions commonly have side effects (e. g.,
mul rbx implicitly modifies the rdx, rax, and rflags register), we disassemble
and lift the gadgets to an intermediate representation (IR) with explicit side
effects. An example for two gadgets is visible in Figure 1a. Noteworthy, each IR
instruction has no implicit side effects. We reiterate that—other than most state-
of-the-art tools—our design imposes no restrictions, ranking, or classification on
the gadgets.

3.2 Logical Encoding

Given a pool of gadgets, we want to query an SMT solver to find a chain of
gadgets that transitions the initial program state (formulated as preconditions)
into the desired program state (formulated as postconditions). For this, we need
to logically encode the semantics of gadgets and chains. Especially, we must model
the semantics of gadgets, the data flow between instructions, and the data flow
between gadgets. Once we have encoded all components, we must combine them
into a single formula, which we then pass to an SMT solver. To construct such a
formula, we connect each statement through conjunctions. In the following, we
first describe how individual gadgets are encoded and then explain how gadgets
are interconnected to form a chain.

Instructions and Gadgets. To use a gadget in the logical formula, we
must first model all implicit state transitions on the instruction level: While
a CPU executes a sequence of instructions in a row, it implicitly tracks state
changes in registers and memory. To represent this behavior in a logical formula,
we must explicitly model it on the instruction and inter-instruction level. To
address the instruction level, recall that we lift instruction into an IR form that
explicitly handles side effects. For the latter, we have to model the data flow
between instructions, e. g., when a register is assigned to another register or is
defined more than once. To achieve this, we make variable assignments stateful
by converting IR instructions into static single assignment (SSA) form [7]. This

6 Schloegel, Blazytko, Basler, Hemmer, and Holz

1 gadget_a:
2 mov rbx, [rsp+8] ; rbx := @64[rsp + 8]
3 mov [rsp], rdx ; @64[rsp] := rdx
4 ret ; rsp := rsp + 8
5 ; rip := [rsp - 8]

1 gadget_b:
2 pop rax ; rax := @64[rsp]
3 ; rsp := rsp + 8
4 inc rax ; rax := rax + 1
5 jmp rbx ; rip := rbx

(a) Assembly code and the corresponding intermediate representation (IR) of the
instructions as comments. Note that side effects are explicitly modeled in the IR, thus
a single assembly instruction may result in multiple IR instructions.

1 gadget_a:
2 rbx_a_1 := read(M_IN, rsp_IN + 8, 64)
3

4 M_a_1 := write(M_IN, rsp_IN, rdx_IN, 64)
5

6 rsp_a_1 := rsp_IN + 8
7 rip_a_2 := read(M_a_1, rsp_a_1 - 8)

1 gadget_b:
2 rax_b_1 := read(M_IN, rsp_IN, 64)
3 rsp_b_1 := rsp_IN + 8
4

5 rax_b_2 := rax_b_1 + 1
6

7 rip_b_2 := rbx_IN

(b) SSA form of the IR representation. The variable’s locality is specified by an unique
identifier, here _a or _b. Suffix _IN represents the initial definition.

rax_p1_IN
rbx_p1_IN

. . .

gadget_a gadget_b

rax_p2_IN := φ(rax_p1_IN, rax_b_p1_2)
rbx_p2_IN := φ(rbx_a_p1_1, rbx_p1_IN)

. . .

(c) Structural overview of the final SMT formula, assuming a chain of two gadgets.

Fig. 1: The high-level idea of our logical encoding: We lift assembly gadgets to an
intermediate representation, make the variable and memory accesses stateful (via static
single assignment form) and encode the data flow between gadgets using φ-functions.

implies that each variable definition is assigned a new unique index, while uses
always use the last defined index. To differentiate between gadgets, we prefix
SSA variable names with an identifier that is unique to each gadget. If a gadget
uses a variable that was not defined previously within this particular gadget,
we postfix it by _IN to indicate that the value has been defined outside of the
gadget’s scope. In other words, it is an input to the gadget.

Example 1. Figure 1b shows how rip_a_2 depends on the memory at address
rsp_a_1 - 8 (line 7), which itself can be calculated as rsp_a_1 = rsp_IN + 8
(line 6). Note the identifier _a, which distinctly marks this variable as belonging
to gadget a, and the postfix _IN indicating that this instruction depends on rsp’s
definition outside this gadget.

Memory. Similar to registers, we apply SSA to memory to make it stateful,
as otherwise, the SMT solver has no context information about memory addresses

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 7

and values. To transform memory into SSA form, we define memory read and write
accesses as explicit operations: v_j := read(M_i, address, size) and M_i+1
:= write(M_i, address, value, size). Given a stateful memory variable M,
we read from and write to this variable at a given address with a given access size.
Note that the write operation is stored in a new memory variable M_i+1 that
encodes the previous write. Internally, these operations are expressed within a
byte-wise memory model similar to the work of Sinz et al. [27], in which memory
accesses with larger sizes are translated to nested byte-wise memory reads or
writes. For a formal definition, we refer the interested reader to Appendix A. We
initialize all memory addresses to contain the value 0.

Interconnecting Gadgets. Up until now, we described how to encode data
flow within a single gadget using SSA for registers and memory. However, our goal
is to combine multiple gadgets in a chain of length n without making assumptions
on neither the order of gadgets nor the particular gadgets used. Especially, we
allow gadgets to occur more than once in the chain. Thus, in the next step, we have
to logically encode the data flow between gadgets. To achieve this, we first have to
ensure that all variables are unique. So far, variables are only unique with respect
to their gadget due to the SSA form’s unique identifier. However, to encode the
order of execution, each variable must also be unique with regard to the gadget’s
position within the chain. Therefore, we also include the position as index within
the SSA variable names: variable_gadgetId_position_definitionIdx. This
way, we can use any gadget at any position in the chain.

Example 2. If we consider the gadget for the first position in the chain, the defi-
nition rbx_a_1 (line 2 in Figure 1b) becomes rbx_a_p1_1 (with p1 representing
the first position). This way, we can use the gadget in position 2 as well, as
rbx_a_p2_1 is a distinct variable.

Naturally, our encoding must consider that a gadget can be used at any
position in the chain, while, at the same time, we cannot know which gadget is at
a specific position within the chain. In other words, gadget_a and gadget_b can
both be at positions 1 and 2, but at the time of formula generation, we do not
know which of these gadgets will be at which position in the chain synthesized
by the SMT solver. Therefore, we must ensure that the gadget at position i+ 1
uses the values derived by the gadget at position i; a scenario strikingly similar
to the problem of merging control flow in SSA form (for which φ-functions are
used). We must merge the state of all gadgets at chain position i such that it
can be used as input for the gadgets in the subsequent position. To achieve this,
we apply the following for each register and memory variable: We first determine
the variable’s last definition in each gadget for position i. Then, we merge the
last definitions from all gadgets via a φ-function and define a new variable that
is used as input for the next position.

Example 3. Assume that we want to encode the gadgets for a chain of length 2 (cf.
Figure 1c). For each register, we create a φ-function that merges the last definitions
of these variables. In the following, we consider this process exemplary for rax at
position 1. The initial value of rax is rax_p1_IN—the input of rax for the first

8 Schloegel, Blazytko, Basler, Hemmer, and Holz

gadget position. Since we do not know if gadget_a or gadget_b is the first gadget
in the chain, we must account for both possibilities and merge their last definitions
of rax in a φ-function. gadget_a does not modify rax, thus we use rax_p1_IN;
for gadget_b, we use its latest definition, rax_b_p1_2. Finally, we define a new
variable—rax_p2_IN—that encodes the merged variables and is used as input
for the second position in the chain: rax_p2_IN := φ(rax_p1_IN, rax_b_p1_2).

To model the data flow between gadgets, the logical formula has to connect
each input variable of the φ-function with the gadget that defined the correspond-
ing variable. On a technical level, we translate this abstract φ-function into nested
If-Then-Else expressions that select the corresponding variable based on the
program counter, which has to be equal to one of the gadget addresses. This way,
we ensure that the conditions are mutually exclusive (as the program counter
can only point to a single gadget) and, thus, each register’s value can always be
uniquely determined. This approach is based on work by Sinz et al. [27].

3.3 Preconditions and Postconditions

Following the logical encoding of the gadget chain, we now describe how to set
the initial state (preconditions) and the targeted state (postconditions).

Preconditions. These conditions allow setting the initial state at the time
when the attacker can divert execution flow to the gadget chain. They constraint
the inputs of the first position in the gadget chain, e. g., we can encode relevant
context from the target program, such as the value of specific registers or memory
areas (e. g., by using a debugger). Additionally, we must specify the location
where the SMT solver should place the synthesized gadget chain (and how many
bytes are available), e. g., by choosing an attacker-controlled buffer on the stack.
This area is then considered a free variable in the formula, such that the SMT
solver can place gadget addresses and data there. We can also enforce specific
characteristics for any attacker-controlled areas, such as constraining memory
buffers to hold only values within a certain range.

Postconditions. While the preconditions outline the initial position, postcon-
ditions describe the desired state that the program should reach after executing
the gadget chain. More specifically, we can set any register or memory address to
a specific value (e. g., the system call we would like to execute and its arguments).
We encode these postconditions by asserting that the outputs (i. e., register and
memory variables) of the last position in the chain are equal to the given values.

Furthermore, we also support indirect constraints, so-called pointer constraints.
These constraints support common constructs, where a reference to a specific
value or string (e. g., “/bin/sh”) in memory needs to reside in a specific register.
To this end, we add an assertion that the memory address pointed to by this
register must contain the desired value(s). This does not require us to specify the
memory address itself, but we can leave the task of choosing a suitable memory
address to the SMT solver. On a technical level, the values are constrained as
byte-wise memory read operations relative to the address chosen by the solver.

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 9

Notably, the flexibility of our approach allows us to enforce arbitrary con-
straints between registers and memory locations. For instance, we could enforce
that (1) certain register values must be odd, (2) the sum of registers must be
equal to a specific value, or (3) the sum of two specific registers must be prime. To
put it differently, our design allows to constraint exotic, target-specific conditions
that may be useful in some exploitation scenarios.

3.4 Formula Generation

Our final formula consists of three main components: preconditions, gadget chain,
and postconditions. The preconditions describe the initial state, which is used as
input for the chain’s initial gadget. The chain contains the encoding of individual
instructions, the data flow between instructions within a gadget, and the data flow
between gadgets—in short, the complete semantics of the gadget chain. Finally,
the postconditions define the state which should be reached after executing the
gadget chain. Here, the attacker encodes the desired CPU state. We combine
these three components with logical conjunctions to the formula:

formula := preconditions ∧ gadget_chain ∧ postconditions

We then pass this formula to an SMT solver that supports the combined quantifier-
free theory of fixed-size bit vectors (registers) and arrays (memory), QF_ABV [28].
If the solver finds a satisfying assignment, it provides a model, i. e., concrete
values for each relevant variable in the formula. For all variables of gadgets that
are not relevant for the synthesized gadget chain, no values are assigned. As a
consequence, the model describes not only the initial state (e. g., values on the
stack) but register and memory values for each gadget in the chain; in other
words, we receive sort of an instruction trace that includes the intermediate values
for each variable in the chain. In a final step, we can extract the initial values for
each controlled buffer and use them as exploitation payload. When the payload
is inserted, the gadget chain is executed as described in the model. Because a
satisfying assignment produced by an SMT solver is a proof of existence, the
gadget chain is guaranteed to reach exactly the specified postconditions. This
is in strong contrast to state-of-the-art approaches, which often use heuristics
rather than proofs to construct a gadget chain.

3.5 Algorithm Configuration

A few parameters define the performance of our approach, most of which affect
the SMT solver: (1) For larger numbers of gadgets, the SMT solver needs more
time in its decision process. To reduce its runtime, we can sample a small subset
of gadgets (e. g., 300 gadgets as determined in empirical tests). (2) Due to our
logical encoding, the chain length must be defined beforehand. While this may
appear inflexible, our evaluation shows that testing different chain lengths is
feasible in practice; if a shorter chain is possible, the SMT solver places semantic
no-operations as padding gadgets in the chain. (3) To avoid excessive runtimes,

10 Schloegel, Blazytko, Basler, Hemmer, and Holz

we define upper time limits for the initial gadget extraction as well as for the
SMT solver. While limiting the initial gadget extraction may reduce the number
of available gadgets, this has no major impact if we only sample a subset.

4 Implementation

To demonstrate the practical feasibility of our proposed approach, we implemented
a prototype of SGC in roughly 5, 000 lines of Python code (see https://github.com/
RUB-SysSec/gadget_synthesis). While SGC’s initial gadget extraction is based
on Binary Ninja [34] (version 2.3.2660), all further steps are built on top of
Miasm [5] (commit 218492cd). Especially the logical encoding of gadgets is
facilitated in Miasm’s IR. We extended its internal memory model to be stateful.
The logic formula generated in the encoding step is then passed to the SMT solver
Boolector [18], which is particularly suited to solve problems within the domain
theory of bit vectors and arrays [36]. As Boolector supports the const-array
extension [31], we use it to model memory and initialize it with a default value
of 0. As memory accesses should not happen in read/write-restricted regions, we
allow the user to specify which memory addresses may be accessed. In general,
the user can add any constraint they need, such as excluding specific bytes from
the chain (so-called bad bytes).

5 Evaluation

Based on the prototype implementation of SGC, we answer the following questions:

1. Is SGC capable of automatically finding valid gadget chains in diverse ex-
ploitation scenarios? How does it compare to state-of-the-art tools?

2. How does SGC perform in real-world exploitation scenarios?
3. How flexible and target-specific are SGC’s chains in comparison to other

approaches?
4. In what regard do SGC’s generated gadget chains differ from the ones found

by state-of-the-art tools?

To answer these research questions, we conduct the following experiments.

5.1 Setup

All our experiments were performed using Intel Xeon Gold 6230R CPUs at 2.10
GHz with 52 cores and 188 GiB RAM, running Ubuntu 20.04 on x86-64. To
facilitate a deterministic analysis, we disable ASLR. Even if present, we only
require an attacker to leak the base address, e. g., via an information leak, which
is a weaker requirement than other approaches make [11,35].

We compare SGC against the state of the art discussed in Section 2. While
these tools work deterministically and take all gadgets into account, SGC does
not: To keep the runtime of the SMT solver manageable, a subset of gadgets is

https://github.com/RUB-SysSec/gadget_synthesis
https://github.com/RUB-SysSec/gadget_synthesis

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 11

randomly sampled for a provided seed. As a consequence, the sampled gadgets
may be insufficient to fulfill the attacker’s goals. To mitigate this problem, SGC
uses by default ten different seeds, running them in parallel and reporting the
first chain found. To add further variety, SGC attempts to find a chain of length
3 and 5, both for 100 and 300 gadgets, while not using more than 128 bytes
of the attacker-controlled buffer. These values have been empirically chosen (cf.
Section 5.6) In summary, 40 configurations are executed in parallel. For our
evaluation, we run all configurations until completion for later analysis instead of
returning the first gadget chain found. As all other tools operate deterministically,
we only run them once. We emphasize that all tools are provided equal resources,
i. e., CPU cores and RAM. While we restrict SGC to one hour for disassembly
and the SMT solver, we define a timeout of 24 hours for all other tools. To verify
whether a generated chain is valid, we use GDB to place it in the attacker-controlled
buffer within the program and then execute the chain. This way, we ensure that
the gadget chain works in practice.

As targets, we use a diverse set of programs. In a first step, we replicate
the experiments of Follner et al. [8] on recent versions of chromium (version
88.0.4324.182), apache2 (version 2.4.46), nginx (version 1.19.9), and OpenSSL
(version 1.1.1f). All of these targets are dynamically linked and we configure SGC
to ignore shared libraries, simulating a scenario where only the base address of
the main executable is known but no locations of libraries. To cover scenarios
where libc is present, we create an empty wrapper program that is statically
linked against glibc version 2.31. To evaluate whether SGC can be used to exploit
real-world vulnerabilities, we use dnsmasq (version 2.77).

5.2 Finding a Chain

Based on the experiments by Follner et al. [8], we evaluate whether SGC is
capable of finding valid gadget chains. While a multitude of possible attacker
goals exists, in reality, attackers mostly aim at either calling library functions
such as mprotect (to change the protection flags of memory regions) and mmap
(to map a RWX page in which their shellcode can be placed), or at execut-
ing system calls, such as execve with the parameter /bin/sh that spawns a
shell. Therefore, we pick three exemplary attacker goals, namely (1) a library
call to mprotect(addr, len, prot) with three parameters, (2) a library call
to mmap(addr, length, prot, flags, fd, offset) with six parameters, and
(3) a system call to execve(path, argv, envp) with four parameters (one being
the system call number) and the requirement to place a string in memory. On
the x86-64 architecture, these arguments are passed via registers [16]. As param-
eters, we use fixed exemplary values that are common in real-world exploitation
scenarios, such as execve(&"/bin/sh", 0, 0) to spawn a shell or setting prot
in mprotect to RWX, such that an attacker could place and execute arbitrary
shellcode. To compare the tools, we run each of them in the same configuration,
analyze whether it finds a chain, and check—based on our verification tooling—if
the chain is valid in practice. Table 2 depicts the results of this experiment.
As ROPgadget only provides fixed heuristics for execve, we exclude it from the

12 Schloegel, Blazytko, Basler, Hemmer, and Holz

other attacker goals. Similarly, Ropper is limited to mprotect and execve, and
P-SHAPE focuses on library calls.

Table 2: Capability of finding a valid gadget chain to call mprotect, mmap, or execve.
Legend: 3 = valid chain, (3) = chain found but crashes program, 7 = no chain found,
1) = chain found when increasing timeout to 5h, 2) = SGC proves that no chain exists.

SGC P-SHAPE angrop ROPium ROPgadget Ropper

mprotect

chromium 3 7 7 3 - 7

apache2 3 (3) 3 3 - (3)
nginx 3 (3) 3 3 - 7

OpenSSL 3 (3) 7 7 - 7

libc 3 (3) 3 3 - 3

mmap

chromium 31 7 7 3 - -
apache2 3 7 7 3 - -
nginx 3 (3) 7 7 - -
OpenSSL 72 7 7 7 - -
libc 3 (3) 7 3 - -

execve

chromium 3 - 7 3 3 7

apache2 3 - (3) 3 7 (3)
nginx 3 - (3) 3 7 7

OpenSSL 3 - 7 7 7 7

libc 3 - 3 3 3 3

Most tools find a chain for mprotect, which is the easiest goal since only three
registers have to be set. angrop struggled both with chromium and OpenSSL and
crashed during the attempt to locate gadget chains. Likewise, P-SHAPE crashed
for chromium. Although P-SHAPE found a chain for four targets, none of them
were valid in real-world scenarios: Manual verification revealed that they cause
segmentation faults (e. g., due to write attempts to inaccessible memory regions).
For mprotect, only SGC identifies a valid gadget chain for all targets.

In comparison to mprotect, finding a chain for mmap is significantly more
challenging since six register arguments have to be set, and thus more suitable
gadgets are required. While all chains found by P-SHAPE crashed again, ROPium
produced valid chains for three targets. However, this was only possible after
we fixed a bug in its source code. SGC found four out of five valid chains. For
chromium, we had to increase the timeout for disassembly and solving to 5h, since
we initially did not find suitable gadgets to set r8 and r9, the fifth and sixth
argument to mmap. We discuss the shortcomings of our disassembly and random
sampling in more detail in Section 6. For OpenSSL, no tool was able to produce a
chain. To get more insights, we performed another experiment in which SGC was
given access to all 3045 available OpenSSL gadgets (instead of choosing a random
subset). After 226s, the SMT solver returned UNSAT, which can be understood as
proof of non-existence. In other words, SGC was able to assert that no chain for
the provided gadgets exists that fulfills the postconditions. This saves the user
valuable time as they are guaranteed that even manual analysis will be fruitless.

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 13

The last attacker goal, execve, models the common scenario where a shell is
spawned via a system call. It differs from the previous goals in the fact that not
only four register values must be prepared, but the string /bin/sh\x00 must be
placed in memory. To express this behavior in ROPium, the user has to manually
set a suitable memory address at which the string should be placed in memory.
As such, the gadget chain construction is not completely automated. However,
we include it since it is the only tool besides SGC that succeeds in finding valid
chains for almost all targets.

In summary, these experiments answer research question 1: SGC outperforms
all state-of-the-art approaches and manages to find valid gadget chains for all
targets, even when other tools fail. For the only case where it did not find a chain,
it even provided formal proof that no chain for the available gadgets can exist.

5.3 Real-World Applicability

To answer research question 2, we are interested in whether SGC proves helpful
towards finding gadget chains in real-world exploitation contexts. To this end,
we conduct a case study for CVE-2017-14493 [25], which describes a stack-based
buffer overflow in dnsmasq (up to version 2.77) [12]. In essence, an attacker can
craft a malicious DHCPv6 packet that, when received by dnsmasq’s DHCP server,
triggers an overflow in the dhcp6_maybe_relay function, where the length and
data of a memcpy can be controlled by the attacker. This bug allows for the
injection of gadget chains of arbitrary length; if ASLR is present, an attacker can
exploit an information leak in the same version, assigned CVE-2017-14494, to
leak the base address [25]. For simplicity, we assume ASLR is already bypassed.

Our goal is to craft a gadget chain that calls execve(&"/bin/sh", 0, 0)
to spawn a shell. Following the System V AMD64 ABI calling convention [16],
register rax needs to hold the execve system call number (0x3b), while the
registers rdi, rsi, and rdx pass the arguments to execve. Therefore, we set the
postconditions accordingly. To define the preconditions, we have to inspect the
program state at the time when the attacker can divert execution flow to the
gadget chain. In detail, we dump the CPU state with GDB and constraint register
values accordingly. After defining preconditions and postconditions, we logically
encode the gadget chain and query the SMT solver with the formula. SGC finds a
gadget chain after approximately 8m. A shell is spawned after embedding the
gadget chain in a DHCPv6 packet and sending it to dnsmasq For a detailed
explanation of the bug and chain found by SGC, we refer to Appendix B. To
conclude research question 2, SGC assists in real-world exploitation scenarios. It
only requires the initial CPU state as preconditions and the desired target state.

5.4 Target-Specific Constraints

To answer research question 3 that addresses the flexibility of our approach, we
conduct two experiments that model different exploitation scenarios. In the first
experiment, we aim at crafting chains that do not include so-called bad bytes. Such
bytes cannot be used in an exploit payload since they act as terminators in the

14 Schloegel, Blazytko, Basler, Hemmer, and Holz

underlying program (e. g., \x00 in C strings). We can avoid using such bytes in our
payload by adding the constraint that each byte in the attacker-controlled buffer
must be different from specific byte values. In this experiment, we try to craft
valid gadget chains that call mprotect, mmap, and execve in the statically-linked
libc wrapper, where \x0a and \x0b are considered as bad bytes. SGC produced
a valid gadget chain within, on average, 512s; similarly, all other tools (excluding
P-SHAPE, which does not support bad bytes) were able to produce gadget chains.
This is not surprising, as avoiding bad bytes is a common requirement for many
exploits and most tools consider this in their heuristics. Then, we slightly modify
this experiment: We set one of the functions’ parameter values to a bad byte
(essentially prohibiting the tools from using this specific value directly), such
that the tools must construct the value indirectly via the gadget chain. In this
scenario, only ROPium and SGC manage to find valid gadget chains. This shows
that even a standard feature can be problematic for heuristics-based tools.

In the second experiment, we add a more complex constraint: We require
that the sum of all values (quadwords) in the attacker-controlled buffer (where
the addresses and data for the gadget chain are placed) must be equal to the
value 0xdeadbeef. While this constraint seems artificial, similar constraints
can be found in commercial DRM systems that perform integrity checks over
specific memory regions. While no other tool provides the flexibility to model
this behavior, we can enforce this within a few lines of code in SGC and produce
valid gadget chains for the same setup as before (within, on average, 527s).

Overall, we conclude that SGC provides great flexibility and allows to model
complex constraints. Thus, it covers even unusual exploitation scenarios.

5.5 Chain Statistics

To answer research question 4, in what regard differ our gadget chains from the
ones found by state-of-the-art approaches, we inspect which types of gadgets
and instructions are used in the generated chains. To this end, we analyze each
valid chain found during our experiment in Section 5.2. Since P-SHAPE found only
invalid chains that crashed the program, we exclude it from this experiment.

As visible in Table 3, SGC’s gadgets contain on average almost six instructions,
whereas the other tools use two to three instructions per gadget. Further, SGC is
the only approach that makes use of explicit memory reads and writes (excluding
instructions such as push and pop); all other tools only use it in the case of
execve to place the string /bin/sh into the memory. Similarly, most of the
tools rely exclusively on return-oriented gadgets; only ROPium uses call-oriented
programming for 3% of its gadgets. Contrary, SGC only uses return-oriented
programming in 68% of the cases, while it deploys call and jump-oriented gadgets
in 32%. In summary, SGC has on average longer gadgets, uses more memory
reads/writes, and has a significantly higher amount of non-return-oriented gadgets;
in short, it includes gadgets specific to the target with side effects that are
disregarded by other approaches due to their generic heuristics.

Another relevant aspect is SGC’s runtime (cf. Table 4). The disassembly
step is comparably slow; the time required for instruction lifting, encoding, and

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 15

Table 3: Statistics over all valid chains generated during experiments in Section 5.2.
SGC P-SHAPE angrop ROPium ROPgadget Ropper

avg. instructions 5.9 - 2.9 2.4 2.0 2.6
gadgets w/ mem. write 9% - 7% 6% 3% 14%

excluding execve 9% - 0% 0% - 0%
gadgets w/ mem. reads 30% - 7% 0% 0% 0%

excluding execve 32% - 0% 0% - 0%

CF types

ret 68% - 100% 97% 100% 100%
call MEM 10% - 0% 0% 0% 0%
call REG 20% - 0% 3% 0% 0%
jmp REG 2% - 0% 0% 0% 0%

Table 4: SGC’s timings for initial disassembly and chaining.
Disassembly Chaining Total

mprotect 1845s 363s 2207s
mmap 1617s 2667s 4284s
execve 1845s 494s 2338s

SMT solving is significantly lower. Our disassembly relies on a combination of
Binary Ninja and Miasm: we first analyze the whole binary and disassemble
then individual functions in Miasm. As it is not a focus of this work, we consider
improving our disassembly component as future work. Only for mmap, finding
the chain takes significantly more time since the SMT solver has to find a valid
chain that prepares six function arguments. For reference, the other tools find
a chain on average within 319s. However, this ignores the runtime when they
found no chain (e. g., Ropper hit the timeout of 24h twice), which was often the
case, especially for mmap. In summary, SGC finds a valid chain within minutes.

5.6 SGC’s Configuration

After successfully answering all research questions, we would like to give a better
intuition of the configuration parameters relevant for SGC. As described before,
our approach is probabilistic: it randomly samples only a small subset of gadgets.
As a result, the chosen subset may not be sufficient to generate a chain that
fulfills the postconditions. We can select another subset of the same size or a
larger number of gadgets to overcome this. The latter, however, increases the time
required by the SMT solver to decide the chain synthesis problem. To get a better
feeling for this trade-off, we vary the chain length and number of sampled gadgets
and analyze how often the solver succeeds in deciding the synthesis problem, i. e.,
it finds a chain or returns UNSAT within one hour. For each configuration, we run
the solver ten times with different seeds such that diverse gadgets are sampled.
We do this for all target programs from Section 5.2 and count how often the
solver finds an answer or timeouts in the process of finding chains for mprotect.

16 Schloegel, Blazytko, Basler, Hemmer, and Holz

Table 5: Number of gadget chains the solver decided (i. e., considered SAT or UNSAT)
vs. timeouts when building a chain to mprotect for the targets in Section 5.2 with
ten different seeds each. Format is #Decided by SMT solver/#Timeout. We color the
prevalent outcome.

Chain Length
1 2 3 4 5 6 7 8

100 50/ 0 50/ 0 49/ 1 31/ 19 24/ 26 16/ 34 15/ 35 12/ 38
300 50/ 0 50/ 0 37/ 13 20/ 30 13/ 37 10/ 40 7/ 43 6/ 44
500 50/ 0 44/ 6 31/ 19 16/ 34 10/ 40 8/ 42 5/ 45 4/ 46

#
G
ad

ge
ts

1000 50/ 0 31/ 19 25/ 25 11/ 39 9/ 41 2/ 48 0/ 50 0/ 50

In total, we perform 50 independent runs (ten different seeds for five different
targets) for each configuration.

As Table 5 shows, the chain length and the number of gadgets determine
the SMT solver’s performance: For a small number of gadgets and chain length
of 1, the solver always finds an answer. However, for longer chains or more
sampled gadgets, the number of timeouts increases. While the solver can decide
some chains of length six or higher, it increasingly triggers the timeout of one
hour. Similarly, for a larger gadget pool (e. g., 1000 gadgets), the solver already
struggles for chains of length three. While the strategy of randomly sampling a
small number of gadgets proved effective, an attacker can always increase the
number of gadgets and set higher timeouts for the SMT solver.

6 Discussion

Limitations of SGC. While SGC has proven overall effective, various aspects can
be improved: (1) Our currently used disassembly is naive since we only consider
regular instruction offsets. As an improvement, we can search unaligned gadgets
since any sequence of bytes can be interpreted as instructions on x86-64. (2) The
SMT solver is the most significant performance bottleneck of our design as it
may require a large amount of time to identify valid gadget chains. However, as
our evaluation shows, randomly selecting a subset of gadgets provides an effective
strategy to reduce SGC’s runtime. In this scenario, an UNSAT provided by the
SMT solver is not a formal proof that no gadget chain exists, as it only proves
that no chain for the selected subset of gadgets exists.

Mitigations. To prevent exploitation, various mitigations have been proposed.
(1) W^X prevents execution of injected code, however, it is ineffective against code
reuse attacks and thus SGC. (2) Address space layout randomization (ASLR)
shuffles the program’s memory layout such that an attacker cannot rely on
addresses. SGC requires only the base address of the code section and does not
require shared libraries to find valid gadget chains, thus a single information leak
suffices. (3) Lastly, control-flow integrity (CFI) prevents the redirection of control
flow to arbitrary code locations. This severely hampers code-reuse attacks such as
SGC because only specific gadgets can be chained together. However, related work

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 17

has shown that even fine-grained CFI is insufficient to prevent code-reuse attacks
in general [11,24]. We believe that an attacker could add constraints modeling
the enforcement policies such that the SMT solver will only select gadget chains
that pass the CFI enforcement policy. We leave this as interesting future work.

7 Related Work

After initial techniques in the domain of code-reuse focused on functions from
libc [30], the concept was generalized to re-use small snippets of existing code [14,
26]. These small snippets are often chained via ret instructions (ROP) [26], but
other control-flow transfers work as well (JOP [3, 6] and COP [4,9]). Mitigations
such as ASLR have been shown to be insufficient [29]. Moving forward with
new mitigations such as control-flow integrity (CFI) [1], even more advanced
approaches have been proposed, e. g., counterfeit object-oriented programming
(COOP) [22] or data-oriented programming (DOP) [10]. Even fine-grained CFI
solutions fail to stop attackers from finding gadget chains [35].

In parallel, various techniques to automate the cumbersome task of identifying
suitable gadgets have been proposed. Early approaches use pattern matching
to search for desired gadgets [13, 19]. Other approaches tackle the task of au-
tomating the attack itself: One of the earliest approaches, Q [23], uses software
verification methods instead of pattern matching to achieve this goal. Using
identification and chaining of gadgets similar to Q, Wollgast et al. [37] automate
COP, which allows them to bypass coarse-grained CFI implementations. Tackling
the problem imposed by fine-grained CFI solutions, Ispoglou et al. [11] propose
an approach, BOPC, which automates data-only attacks. Further improving this
avenue, Schwartz et al. [24] propose a generic approach, Limbo, capable of con-
structing chains using ROP, JOP, COP, or DOP. Their approach is similar to ours
in the spirit of maintaining a generic approach to code-reuse attacks. However,
their focus is on the construction of CFI-compatible gadget chains. Internally,
their search relies on concolic execution and hard-coded heuristics. In contrast,
our approach does not tackle the problem of identifying CFI-aware gadgets but
maintains generality without relying on hard-coded heuristics. Further, Limbo
only works for 32-bit Linux executables, which limits their real-world applicability.
As no code is published, we cannot evaluate against Limbo.

8 Conclusion

In this paper, we presented a generic and flexible approach to automate the task
of finding gadget chains. With our prototype implementation, we have shown
that SGC outperforms state-of-the-art tools. It not only finds gadget chains where
all other approaches fail but also allows to model complex constraints.

Acknowledgements This work was supported by the German Research Foun-
dation (DFG) within the framework of the Excellence Strategy of the Federal
Government and the States—EXC 2092 CaSa—39078197.

18 Schloegel, Blazytko, Basler, Hemmer, and Holz

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-Flow Integrity Principles,
Implementations, and Applications. ACM Transactions on Information and System
Security (TISSEC) 13(1) (2009)

2. angr team: angrop. https://github.com/angr/angrop
3. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-Oriented Programming: A

New Class of Code-Reuse Attack. In: ACM Conference on Computer and Commu-
nications Security (CCS) (2011)

4. Carlini, N., Wagner, D.: ROP is Still Dangerous: Breaking Modern Defenses. In:
USENIX Security Symposium (2014)

5. CEA IT Security: Miasm – Reverse Engineering Framework. https://github.com/
cea-sec/miasm

6. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-Oriented Programming Without Returns. In: ACM Conference on
Computer and Communications Security (CCS) (2010)

7. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An Efficient
Method of Computing Static Single Assignment Form. In: ACM Symposium on
Principles of Programming Languages (POPL) (1989)

8. Follner, A., Bartel, A., Peng, H., Chang, Y.C., Ispoglou, K., Payer, M., Bodden, E.:
PSHAPE: Automatically Combining Gadgets for Arbitrary Method Execution. In:
Security and Trust Management Workshop (2016)

9. Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of Control: Over-
coming Control-Flow Integrity. In: IEEE Symposium on Security and Privacy
(2014)

10. Hu, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P., Liang, Z.: Data-Oriented
Programming: On the Expressiveness of Non-control Data Attacks. In: IEEE
Symposium on Security and Privacy (2016)

11. Ispoglou, K.K., AlBassam, B., Jaeger, T., Payer, M.: Block-Oriented Program-
ming: Automating Data-only Attacks. In: ACM Conference on Computer and
Communications Security (CCS) (2018)

12. Kelley, S.: dnsmasq. https://thekelleys.org.uk/dnsmasq/doc.html
13. Kornau, T.: Return-Oriented Programming for the ARM Architecture. Master’s

thesis, Ruhr-Universität Bochum (2010)
14. Krahmer, S.: x86-64 Buffer Overflow Exploits and the Borrowed Code Chunks

Exploitation Technique (2005)
15. Kroening, D., Strichman, O.: Decision Procedures. Springer (2016)
16. Matz, M., Hubicka, J., Jaeger, A., Mitchell, M.: System V Application Binary

Interface. AMD64 Architecture Processor Supplement, Draft v0 99 (2013)
17. Milanov, B.: ROPium. https://github.com/Boyan-MILANOV/ropium
18. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. Journal on Satisfiability, Boolean

Modeling and Computation 9(1), 53–58 (2014)
19. Roemer, R.G.: Finding the Bad in Good Code: Automated Return-Oriented Pro-

gramming Exploit Discovery. Master’s thesis, UC San Diego (2009)
20. Salwan, J.: ROPgadget. https://github.com/JonathanSalwan/ROPgadget
21. Schirra, S.: Ropper. https://github.com/sashs/Ropper
22. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.R., Holz, T.: Counter-

feit Object-Oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications. In: 2015 IEEE Symposium on Security and Privacy.
pp. 745–762. IEEE (2015)

https://github.com/angr/angrop
https://github.com/cea-sec/miasm
https://github.com/cea-sec/miasm
https://thekelleys.org.uk/dnsmasq/doc.html
https://github.com/Boyan-MILANOV/ropium
https://github.com/JonathanSalwan/ROPgadget
https://github.com/sashs/Ropper

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 19

23. Schwartz, E.J., Avgerinos, T., Brumley, D.: Q: Exploit Hardening Made Easy. In:
USENIX Security Symposium (2011)

24. Schwartz, E.J., Cohen, C.F., Gennari, J.S., Schwartz, S.M.: A Generic Technique for
Automatically Finding Defense-Aware Code Reuse Attacks. In: ACM Conference
on Computer and Communications Security (CCS) (2020)

25. Serna, F.J., Linton, M., Stadmeyer, K.: dnsmasq stack-based buffer over-
flow (CVE-2017-14493). https://security.googleblog.com/2017/10/behind-
masq-yet-more-dns-and-dhcp.html

26. Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In: ACM Conference on Computer and
Communications Security (CCS) (2007)

27. Sinz, C., Falke, S., Merz, F.: A Precise Memory Model for Low-level Bounded Model
Checking. In: International Conference on Systems Software Verification (2010)

28. SMT-LIB: Logics. https://smtlib.cs.uiowa.edu/logics-all.shtml#QF_ABV
29. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:

Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space
Layout Randomization. In: IEEE Symposium on Security and Privacy (2013)

30. Solar Designer: Return-to-Libc (1997)
31. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.: A Decision Procedure for an

Extensional Theory of Arrays. In: IEEE Symposium on Logic in Computer Science
(2001)

32. Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: Eternal war in memory. In: IEEE
Symposium on Security and Privacy (2013)

33. Vanegue, J., Heelan, S., Rolles, R.: SMT Solvers in Software Security. In: USENIX
Workshop on Offensive Technologies (WOOT) (2012)

34. Vector 35 Inc.: Binary Ninja. https://binary.ninja/
35. van der Veen, V., Andriesse, D., Stamatogiannakis, M., Chen, X., Bos, H., Giuffrdia,

C.: The Dynamics of Innocent Flesh on the Bone: Code Reuse Ten Years Later. In:
ACM Conference on Computer and Communications Security (CCS) (2017)

36. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
SMT competition 2015-2018. J. Satisf. Boolean Model. Comput. 11(1) (2019)

37. Wollgast, P., Gawlik, R., Garmany, B., Kollenda, B., Holz, T.: Automated Multi-
architectural Discovery of CFI-resistant Code Gadgets. In: European Symposium
on Research in Computer Security (ESORICS) (2016)

A Memory Modeling

Byte-wise memory reads and writes are modeled using single select and store
operators, respectively. Larger reads are modeled by concatenating multiple select
expressions, which we define recursively in terms of smaller read operations. Reads
smaller than 64-bit into a 64-bit register are zero-extended by using concat with
the zero bit vector bv0. Larger writes are similarly modeled using the composition
of multiple store expressions. Table 6 shows memory accesses of various sizes.
Given an array m, address k and value v and bit size n ∈ (8, 16, 32, 64), we use
the names mem_readn(m, k) and mem_writen(m, k, v) to substitute the longer
SMT expressions from these tables.

https://security.googleblog.com/2017/10/behind-masq-yet-more-dns-and-dhcp.html
https://security.googleblog.com/2017/10/behind-masq-yet-more-dns-and-dhcp.html
https://smtlib.cs.uiowa.edu/logics-all.shtml#QF_ABV
https://binary.ninja/

20 Schloegel, Blazytko, Basler, Hemmer, and Holz

Table 6: Encoding of memory reads and writes (m: memory, k: address, v: value).
Name SMT encoding

mem_read8(m, k) select(m, k)
mem_read16(m, k) concat(mem_read8(m, k),mem_read8(m, k + 1))
mem_read32(m, k) concat(mem_read16(m, k),mem_read16(m, k + 2))
mem_read64(m, k) concat(mem_read32(m, k),mem_read32(m, k + 4))

mem_write8(m, k, v) store(m, k, v0:7)
mem_write16(m, k, v) mem_write8(mem_write8(m, k, v0:7), k + 1, v8:15)
mem_write32(m, k, v) mem_write16(mem_write16(m, k, v0:15), k+2, v16:31)
mem_write64(m, k, v) mem_write32(mem_write32(m, k, v0:31), k+4, v32:63)

B dnsmasq CVE-2017-14493

In the following, we analyze the dnsmasq bug in more detail. The stack-based
buffer overflow in dnsmasq is caused by the absence of a length check of the
data copied to a static buffer on the stack. Figure 2 shows the vulnerable call to
memcpy in function dhcp6_maybe_relay. Sending a malicious DHCPv6 packet
allows to gain control over the instruction pointer by overflowing the mac buffer
of static size DHCP_CHADDR_MAX (16) in the state structure present on the stack.

206 /* RFC-6939 */
207 if ((opt = opt6_find(opts, end, OPTION6_CLIENT_MAC, 3)))
208 {
209 state->mac_type = opt6_uint(opt, 0, 2);
210 state->mac_len = opt6_len(opt) - 2;
211 memcpy(&state->mac[0], opt6_ptr(opt, 2), state->mac_len);
212 }

Fig. 2: Vulnerable memcpy in file rfc3315.c, which overflows the mac buffer in state.

The proof-of-concept (PoC) provided alongside the bug report [25] builds
up such a DHCPv6 packet containing an OPTION6_CLIENT_MAC option holding
data of excessive length. While the PoC overwrites the instruction pointer with
a dummy value, injecting an arbitrary amount of bytes is possible. As long as
the stack is not exhausted, the packet’s content is copied and remains untouched
until the instruction pointer is overwritten.

In order to synthesize a gadget chain, the information needed to specify
preconditions and postconditions is gathered by extracting the program state
before hijacking the control flow through GDB. Table 7a shows the preconditions
set for dnsmasq. The initial ret instruction, which redirects the control flow
to the chain’s first gadget (gadget_0), is specified by preconditioning rip. The
stack pointer rsp points to the part of the controlled buffer, where the gadget
chain will be copied. In the logical formula, this stack area is a free variable.

Since we want to execute a system call to execve to spawn a shell, the final
register values which the gadget chain needs to reach are specified accordingly.
Table 7b shows the postconditions in preparation for calling execve(&"/bin/sh",

Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains 21

Table 7: Preconditions and postconditions used for dnsmasq. Registers not mentioned
in the preconditions are free variables, i. e., registers an attacker controls and can set to
an arbitrary value.

(a) Preconditions

Register Value

rip 0x33dfb
rax 0x223
rcx 0x0
rdx 0x5a
rdi 0x22
r8 0x7fffffffe0e0
r9 0x0
r10 0x7fffffffbc50

(b) Postconditions

Register Value

rip 0x461d0
rax 0x3b
rsi 0x0
rdx 0x0
rdi &"/bin/sh"

0, 0). Here, rip holds the address of a syscall instruction available in the
program. Using the default configuration described in Section 5.1, SGC finds a
gadget chain consisting of four gadgets within approximately 8m. While most
gadgets are straightforward, gadget_3 (shown in Figure 3) writes a value to
the stack outside the attacker-controlled buffer, a side effect that does not
harm the chain. The arithmetic operations of the first four instructions do
not change register rax’ value of 0. In line 6, the lea instruction is used to
add 0x5 to the value present in rbp = 0x55555559a1cb. The resulting address,
0x55555559a1d0, is a syscall instruction; the address is placed on the stack
at address 0x7fffffffe240 present in register rbx. As this address is writable
memory, no harm results from this side effect.

As mentioned earlier, the PoC crafts a rogue DHCPv6 packet. In order to
construct the payload with our synthesized gadget chain, the length parameter
is adjusted and the dummy value is replaced with the data of the gadget chain.
Sending this packet to the dnsmasq DHCP server successfully spawns the shell.

1 0x55555558a009:
2 movzx rax, ax
3 imul rax, ax, 0x1DCB
4 shr eax, 0x15
5 movzx eax, ax
6 lea rax, qword ptr [rax + rbp + 0x5]
7 mov qword ptr [rbx], rax
8 pop rbx
9 pop rbp

10 pop r12
11 ret

Fig. 3: gadget_3 of the gadget chain used to spawn a shell in dnsmasq.

	Towards Automating Code-Reuse Attacks Using Synthesized Gadget Chains

