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ABSTRACT

The insertion of trojanised binaries into supply chains are a partic-

ularly subtle form of cyber-attack that require a multi-staged and

complex deployment methodology to implement and execute. In

the years preceding this research there has been a spike in closed-

source software supply chain attacks used to attack downstream

clients or users of a company.

To detect this attack type, we present an approach to detecting

the insertion of malicious functionality in supply chains via dif-

ferential analysis of binaries. This approach determines whether

malicious functionality has been inserted in a particular build by

looking for indicators of maliciousness. We accomplish this via

automated comparison of a known benign build to successive po-

tentially malicious versions.

To substantiate this approach we present a system, Exorcist,

that we have designed, developed and evaluated as capable of de-

tecting trojanised binaries in Windows software supply chains. In

evaluating this system we analyse 12 samples from high-profile

APT attacks conducted via the software supply chain.

CCS CONCEPTS

• Security and privacy→Malware and its mitigation; Intru-

sion detection systems.
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1 INTRODUCTION

Trojanised software is not a new concept or attack vector. How-

ever, as the impact and revenue of cyber-espionage and cybercrime

enterprises increases, so does the evasive sophistication of these

cyber-attacks. A recently published quantitative analysis of supply

chain attacks, [26] stated that the volume of this attack type has

been increasing sharply over previous years. Enck and Williams

conducted summits for government agencies and industry to ascer-

tain the most difficult challenges in detecting supply chain attacks,

due to the rapid increase of detected supply chain attacks of 430%

in 2020 and 650% in 2021 [24].

Advanced Persistent Threat (APT) groups use this attack vector

to conduct campaigns, due to its high impact and stealth. Solar-

Winds was a notable APT supply chain attack, used to penetrate

many different organisations. This compromise occurred in the

software build chain and was used to attack downstream clients

of SolarWinds. This exploited the fact that SolarWinds Orion is

network orchestration software, used to monitor and control the

networks in which it is deployed.

NotPetya, an infamous recent cyber attack, estimated to have

caused $10 billion in total damage to victim organisations, had

its initial payload delivered via a closed-source supply chain [28].

These intrusions are particularly devastating towards a victim or-

ganisation as they damage all clients of a given company that use a

given piece of software and typically have a long dwell time in a

network before the intrusion is detected [25, 27]. The trojanised bi-

naries use evasive mechanisms such as ‘Living-Off-The-Land’ (LotL)

techniques and are highly sophisticated operations [6, 31, 32].

To detect closed-source supply chain attacks we propose the

approach of differential analysis of binaries between build versions.

To demonstrate the effectiveness of this approach we design, im-

plement and evaluate a system, Exorcist, that compares a known

benign binary in a previous build to a new build. In this compara-

tive differential analysis, Exorcist automatically deploys different

detection heuristics, enumerated in Table 1 and Table 2. Exorcist

then determines whether this new binary is malicious through

weighting and aggregating these heuristics.

In our research, we aim to ascertain whether differential analysis

can identify maliciousness injected between build versions. We can

determine the effectiveness of the approach by testing if Exorcist

detects trojanised binaries during the software build process.

We develop detection algorithms to analyse changes in the static

characteristics of binaries and their dynamic behaviour. Exorcist

https://doi.org/10.1145/3560835.3564550
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Figure 1: Positioning of Exorcist’s security testing within a typical continuous integration and deployment pipeline (stage 6).

also aggregates various detection heuristics and weights their re-

sults to determine whether or not each build is malicious.

We also measure certain characteristics of the closed-source

supply chain attacks we analyse. We ascertain the prevalence and

distribution of indicators of maliciousness in the real-world closed-

source supply chain attack campaigns we use to evaluate Exorcist.

From developing and testing the detection capabilities of our dif-

ferential analysis approach implemented in Exorcist, the resultant

key contributions of our work are:

• We introduce an automated method to detect insertions of

trojanised binaries in software supply chains, evaluated in ex-

periments analysing 12 evasive real-world APT campaigns.

• We implement several detection heuristics that operate via

differential analysis of two binaries. We evidence advantages

of this approach over analysis of binaries in isolation.

• We implement novel obfuscation detection heuristics that

detect malicious activity even when other indicators have

been removed. We develop other detection heuristics that

implement our approach of differential analysis.

2 CHALLENGES

In this section, we explain the key challenges in systematic detection

of closed-source supply chain attacks via differential analysis.

Highly Evasive. Supply chain attacks are designed to be hard

to detect. They are frequently conducted by APT groups [3], that

Han et al. show using ‘low-and-slow’ techniques, wherein malware

implants slowly and cautiously undertake their actions upon ob-

jectives [30]. APT attacks using evasive mechanisms such as LotL

techniques have been investigated [31, 63], with systems for anal-

ysis of malware samples after their entry and deployment into a

network. By contrast, Exorcist detects malware at the point of

insertion in the build process.

Proprietary Code. To prevent loss of intellectual property,

closed-source supply chains are proprietary. This is in contrast

to existing solutions for open-source software supply chain verifi-

cation, wherein the code is assumed to be publicly accessible and to

have no data privacy concerns with regards to submitting compiled

code to online analysis systems. The closed-source nature of the

software leads to additional problems. One such problem is that

the implementation of a system such as Exorcist must not submit

code to any online verification service during its execution.

Lack of Data. While closed-source supply chain attacks are

a substantial and growing threat, there is not yet a large corpus

of existing attacks from which to develop a system. Limited data

are available for system evaluation. To correctly test these systems

requires the acquisition of a released piece of software subsequently

identified as malicious. In addition to a trojanised version of the

binary, a known benign binary is needed to conduct differential

analysis. This adds complexity as this software is also proprietary

and may be subject to limited distribution. Such pairs of binaries are

still comparatively rare. The rarity of these events and the required

data may explain the scarcity of previous published research.

3 EXORCIST DESIGN

To evidence the viability of using an approach of differential anal-

ysis of binaries to detect supply chain attacks, we design and im-

plement a detection system. This system, Exorcist, is designed as

part of a build pipeline. It compares a potentially trojanised binary

with a previously known benign version.

In this section, we describe the architecture and components of

Exorcist. Exorcist analyses the difference between the dynamic

behaviour and static properties of two successive versions of a

binary. In this comparison, differential analysis is performed to

ascertain whether changes cross the threshold of maliciousness.

This differential analysis combines several detection heuristics,

as whilst one malicious indicator may be suspicious, several co-

existing indicators are more reliable and accurate in determining

overall maliciousness. For instance, indicators of obfuscation or

packing in isolation may potentially indicate maliciousness, if iden-

tified simultaneously this is more likely to indicate malfeasance.

3.1 Threat Model and Scope

Our threat model is that software developers in a build pipeline

may have infected machines or be malicious actors themselves. We

assume that upstream components excluding the compiler before

the binary is ingested into Exorcist may be compromised. The

specific threat we detect is malicious functionality injected into a

software supply chain before a compiled executable is released.

In developing Exorcist, we narrow the focus and scope to Win-

dows Portable Executable (PE) binaries [45]. This includes Dynami-

cally Linked Libraries (DLLs) and Microsoft Installer (MSI) files.

3.2 System Requirements

The requirements and eventual design of Exorcist are based on the

challenges enumerated in the previous section and aim to practically
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evaluate the effectiveness of our approach of differential analysis.

We identified the requirements on which Exorcist is based:

(1) Capability of automatic implementation and deployment

as part of a development pipeline, between the continuous

integration and continuous deployment stages.

(2) The ability to identify novel and potentially malicious dy-

namic behaviours and static characteristics from previous

build versions through a process of differential analysis.

(3) Exorcist’s analysis should execute locally, rather than us-

ing cloud-based services for analysis of maliciousness, as

Exorcist will be processing proprietary code.

3.3 System Overview

To fulfill these requirements and evidence the practical implemen-

tation of a differential analysis approach to detect supply chain

attacks, we developed Exorcist. This system is deployed within a

build pipeline, as shown in Figure 1. Exorcistwill alert the security

team if the build has indicators of potential compromise.

Exorcist has two main components that analyse differences

between successive binary versions to look for indicators of ma-

liciousness. An automated static analysis component, which uses

novel methods such as obfuscation detection algorithms to detect in-

dicators of injection of malicious components in combination with

existing automated reverse engineering methods. Exorcist detect

abnormal dynamic activity in the execution of a given executable

that is not present in the initial binary.

A weighted heuristic system is applied to all detection heuris-

tics that trigger when suspicious differences between builds are

identified. If the weights in this system exceed a predetermined

threshold, Exorcist classifies the latest build version as malicious.

The indicators detected by comparing build versions are classified

as major or minor, depending on how severe the detection heuristic

determines it to be.

4 IMPLEMENTATION

Exorcist is a combination of several modular components written

in Python, orchestrated through a central processing component

that weights the outcome of detection heuristics. These detection

heuristics implement differential analysis between successive soft-

ware versions to detect maliciousness.

In this section we provide more detail on our implementation

of these modules and systematised them via our weighted heuris-

tic system. We also qualify what differentiates minor and major

indicators and why these thresholds were set.

4.1 Automated Static Analysis

To determine the legitimacy of a given binary we deploy different

static analysis methods, that we list in Table 1. We use a subset of

static analysis techniques to detect injected maliciousness during

the build process. We select this subset of detection heuristics based

on known techniques used in prior supply chain attacks.

To create the static analysis portion of Exorcist we write detec-

tion algorithms that analyse certain binary characteristics, whilst

leveraging existing static analysis research.We combine these meth-

ods to ascertain if the differences between the two binaries pass

the threshold of maliciousness.

Category Malicious Indicator Weight (𝑤𝑖 )

Packing

High Entropy Section

High Entropy Binary

Section Removal 1.0

Permissions Changes

Vsize/Psize Ratio

OEP Change

Obfuscation

Cyclomatic Complexity

Control-Flow Flattening

Overlapping Instructions 5.0

Function Complexity

Large Basic Blocks

Average Instructions

API Calls

& Imports

Import Changes 1.0

API Changes

Binary Signing
Signature Altered 3.0

Signature Removed

DLL

Characteristics

Characteristics Altered

Characteristics Removed

3.0

Table 1: Detection heuristics implemented for differential

analysis of the static properties of successive binary versions.

Windows API Calls and Imports. Exorcist extracts a list of API

calls from both builds of the binary using the Python library pefile

to extract the Import Address Table (IAT) and resolving all API calls.

To detect suspicious system calls we compare those extracted to a

list of the most frequently occurring API calls by malware [50].

We compare the frequency of these calls between builds, to see if

anomalous decreases or increases occur. We classify more than ten

novel additional invocations of API calls within our suspicious API

list as indicating the addition of malicious functionality. We iden-

tify a reduction of over 25% of calls between builds as indicative of

IAT obfuscation. We determine these thresholds to prevent heuris-

tics triggering on the normal range of expected changes between

software versions. These are both classified as major indicators of

maliciousness in our weighted heuristic system.

There are also imports that are seldom called by benign programs.

Malware analysts use import hashing to determine the malicious-

ness of samples [40]. Some malware reconstructs the IAT dynam-

ically at runtime, so an absence or reduction of imports between

builds can indicate maliciousness. Cheng et al. researched malware

API obfuscation and binary deobfuscation [13, 14]. Exorcist does

not deobfuscate binaries, but identifies the presence of obfuscation.

Legitimate binaries do not typically obfuscate API calls aside

from the purpose of preventing reverse engineering through toolk-

its such as Themida and VMProtect [54]. If differential analysis

reveals the insertion of obfuscation between versions, the use of

copyright protection tools will be known to the security team and

can therefore be disregarded.

Binary Signing.Many software supply chains rely on signing

compiled binaries, to attempt to ensure their provenance. Kim et al.

measure a wide range of malware abusing the signing process [34],

such as Stuxnet and Flame. Most known supply chain attacks con-

tain signature manipulation. Research states AV detection algo-

rithms evaluate malware’s maliciousness due to it being signed,

without assessing signature revocation or the trustworthiness of

the certificate authority [61].
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We extract Authenticode signatures from a binary and analyse

the difference between this extracted signature and the one ex-

tracted from previous builds. Changes in signature characteristics

are considered important, not just certificate validity. Changes such

as the certificate authority changing between builds or alteration of

the chain of trust can indicate an attack using signature corruption

in progress, with scant legitimate reasons for this to occur and so is

weighted heavily within our system. Exorcist’s weighted heuristic

system classifies changes of these signatures as a minor indicator

and removal as a major indicator of maliciousness.

Packer Detection. Packing schemes frequently include some

distortion in the rate of entropy within a given executable [41].

If one or two of the following properties emerge between builds,

Exorcist categorises this as a minor indicator. If more than two

emerge, it is instead categorised as a major indicator. We observe

the following properties to identify use of packers [1, 60]:

Exorcist calculates the Shannon entropy [55], for the executable

as a whole and for subsections of the binary. Entropy can be a reli-

able indicator of compression or encryption used by packers [39].

An entropy increase across an entire binary or a section between

software versions may indicate compression or cryptographic oper-

ations. Exorcist adoptsMantovani et al. [41]’s threshold of entropy

of 7.0 as the difference between high and low entropy in a binary.

Whilst some changes in the nature of the sections of the exe-

cutable file can be expected between software versions, Exorcist

recognises several changes thatmay indicatemaliciousness. Exorcist

extracts these characteristics using the Python library pefile and

some additional processing: (i) Changes in the Original Entry Point

(OEP) of the binary between compilations. (ii) Any changes in sec-

tion names or permissions to read, write or execute. (iii) Whether

the ratio of code to data changes. (iv) Whether there is an abnormal

difference between section Vsize (virtual size) and Psize (physical

size), this being the size of the executable in memory and size on

disk. If these values differ there may be decompression routines. (v)

Whether there has been addition or removal of sections.

Obfuscation Detection. Obfuscation is used to impede analysis

and hide malicious functionality [4, 5, 16, 53]. Code obfuscation

artificially increases the program’s complexity so it can be detected

with code complexity metrics, such as a graph’s cyclomatic com-

plexity or the average instructions per basic block [10]. We use such

metrics as maliciousness indicators by identifying code complex-

ity increases between different program versions. We analyse two

binaries using a disassembler and compare how many complexity

metrics show a complexity increase in the newer program version.

We count the overall number of detected instructions and func-

tions in our binary comparison. To detect obfuscation techniques

such as instruction and data encodings [15, 67] which significantly

increase code size, we compute average instructions per basic block.

For control-flow obfuscations such as opaque predicates and range

dividers [4], we calculate the function’s control-flow graphs average

cyclomatic complexity.We also look for complex state machines and

control-flow flattening by counting the functions our control-flow

flattening detection heuristic [9] finds.

Comparing average values of different complexity metrics works

for smaller programs but is less efficient for larger programs, espe-

cially if a minority of functions are modified. For these, we use a

more fine-grained analysis: For average instructions per basic block

Category Malicious Indicator Weight (𝑤𝑖 )

Registry

Modification

Query Registry

Registry Addition 1.0

Registry Deletion

Registry Alteration

Filesystem

Modification

File Creation 1.0

File Deletion

Network

Activity

Change in Volume 1.0

Suspicious IP/DNS

LotL

Techniques

Proxied Execution

Reconnaissance 1.0

Script Execution

Table 2: Detection heuristics implemented for differential

analysis of dynamic behaviour of successive binary versions.

and average cyclomatic complexity heuristics, we compute the met-

rics on a function level, take the top 10% and calculate an average

score for each metric. This way, we can identify large complexity

increases, even if only applied locally to specific functions.

4.2 Dynamic Analysis

Exorcist deploys the executable being built to a local automated

instance of Cuckoo sandbox. Exorcist then records the behaviour

of this executable within the sandbox and compares the behaviour

between versions to see if behaviour has been added or removed.

We list the new dynamic behaviour that Exorcist classifies as

malicious in Table 2.

A severe reduction in functionality between builds is a malicious-

ness indicator,potentially evidencing anti-VM techniques in use

and therefore trigger Exorcist’s detection algorithms.

Network Activity. We record and identify any deviation in

network activity between build versions of a binary resultant from

execution of a binary. This network footprint is the list of ports,

domains and IPs extracted from the packet capture recorded during

each binary’s sandboxed execution. If there is any network activity

to new IPs, domains or ports this is classified as a major indicator.

Processes. Another indicator of maliciousness is the process

activity that is recorded during the execution of the binary. If there

is any alteration of process executions between builds, this may be

indicative of malicious functionality being added.

Evasivemalware in supply chains frequently uses a wide range of

LotL techniques to achieve their goals. We identify LotL technique

executions in these process execution logs by analysing which pro-

cesses execute using applications installed by default on Windows

systems. Similarly, the use of scripting languages by LotL binaries

is suspicious. If process logs show the addition of two or more LotL

commands between builds, this is classified as a major indicator.

Filesystem Modification. Any indication of filesystem or reg-

istry modification can indicate modification of the operating system

by a malicious binary, if it deviates from that conducted from pre-

vious builds. We define the threshold between minor and major

indications of maliciousness with this detection heuristic by the

number of modifications in comparison to the previous version.

4.3 Weighted Heuristic

Once the results of all our differential analyses are assembled, they

are combined to produce a final determination of whether a binary
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Static Dynamic

Campaign Filetype
API
Calls

Packing
Binary
Signing

Obfuscation
Security (Dll)
Characteristics

Registry
Modification

Network
Activity

Filesystem
Modification

LotL Score

CCleaner EXE ⃝  ⃝ G#     ⃝ 9.5

Chiacoin EXE    G#   ⃝  ⃝ 12.5

DarkSide MSI G# G# ⃝   ⃝ ⃝ ⃝ ⃝ 9.0

Dofoil EXE ⃝ G#  G# ⃝ ⃝ ⃝ ⃝ ⃝ 6.0

NotPetya DLL ⃝ G# ⃝ G# ⃝ ⃝ ⃝ ⃝ ⃝ 3.0

D
ra
g
o
n
fl
y

Ewon 1 EXE     ⃝ ⃝ ⃝ ⃝  11.0

Ewon 2 EXE    G#  G# ⃝   13.0

Mbconnect 1 EXE    G#   ⃝   13.5

Mbconnect 2 EXE   ⃝ G# ⃝ ⃝ ⃝ ⃝ ⃝ 4.5
Mesa

Imaging
MSI   ⃝   ⃝ ⃝ ⃝  11.0

So
la
r Sunburst DLL ⃝  ⃝  ⃝ G# ⃝ G# ⃝ 7.0

Supernova DLL ⃝  ⃝  ⃝ ⃝ ⃝ ⃝ ⃝ 6.0

Table 3: Overview of detection results for the APT closed-source supply chain attacks. The malicious properties are those that

differential analysis identified in the trojanised binary version but not the initial benign version.  is a major indicator of

maliciousness. G# is a minor malicious indicator. The severity of maliciousness is determined by the weighted heuristic system.

is determined as malicious or not. This combination is accomplished

via a weighted score, defined as follows:

𝑆 =

∑︁
𝑤𝑖 · 𝑠𝑖

Where 𝑠𝑖 is a score assigned to the result of analysis category 𝑖 and

𝑤𝑖 is a weight applied for that category. Scores are assigned as:

𝑠𝑖 =




1.0 Major indication

0.5 Minor indication

0.0 otherwise

Weights are then applied at a per-category level, as we list in Table

1 and 2. We select these weights based upon the amount of false

positives for each category type. Due to the likelihood of false posi-

tives occurring in relative comparison to static indicators, dynamic

indicators are assigned a weighting of 1.0.

For instance, Authenticode signatures [35] are not typically

changed or removed between builds, so these categories are as-

signed higher weightings. Multiple coexisting obfuscation indica-

tors are rare between versions of benign binaries, so are assigned a

higher weighting.

A final result is obtained by comparing the score 𝑆 to a threshold

𝛼 . If 𝑆 ≥ 𝛼 then the second iteration of the binary is considered

malicious, otherwise it is deemed benign. The value of 𝛼 allows the

weighted heuristic system to be configured to trade off the risk of

false positives against false negatives. In our case studies, we set

a maliciousness threshold of 2.0 to accomodate a small number of

false positive indicators.

5 CASE STUDIES

To demonstrate the practical effectiveness of our approach, we

evaluate the detection capabilities of our analysis system Exorcist.

We describe the results of automated differential analysis upon 12

recent APT software supply chain attacks, that we list in Table 3,

with the exact versions and timelines in Appendix A.

5.1 SolarWinds

Multiple trojans were inserted in various SolarWinds products in

2020 in a closed-source supply chain attack [48].

Sunburst. Multiple threat intelligence reports recognise this

campaign as evasive [58]. Despite the sophistication of this attack,

this .dll file contained themost indicators of potential obfuscation of

the samples we analysed (six out of eight possible indicators). This

is coupled with several changes of static characteristics between

versions, such as section removal, a marginal global increase in

entropy and a change in OEP of 48324 bytes. This shows that by at-

tempting code obfuscation, the malicious actors enabled Exorcist

to detect their trojanised software.

Supernova. A further compromised .dll was used in this cam-

paign - app_web_logoimagehandler.ashx.b6031896.dll. Both

of these .dlls show indicators of the addition of packing and obfus-

cation between versions, as shown in Table 5.

Exorcist identified more static indicators of maliciousness, al-

though slightly fewer indicators of obfuscation in this .dll. In par-

ticular, the ‘.rsrc’ and ‘.reloc’ sections of the binary were removed.

New suspicious API calls were added, including calls used for per-

sistence such as ‘RegCreateKeyEx’and ‘SetEnvironmentVariableW’.

5.2 NotPetya

Similar to SolarWinds, NotPetya relied on a trojanised update mech-

anism to deliver a malicious .dll.

The malicious version of this binary contains a similar amount

of code to the benign binary but with marginally higher overall

complexity. Exorcist identified an entropy increase between ver-

sions on a global level and a large shift of 36352 bytes in the OEP

address. These obfuscation and packing indicators mean Exorcist

classifies the binary as malicious. Despite these static properties,

NotPetya had the least indicators of all samples analysed.

5.3 CCleaner

CCleaner was a targeted attack, deployed as a trojanised binary

withminor changes from the original binary. The trojan in CCleaner

was subtle, only executing in a specific target environment; in a

manner similar to Stuxnet [38]. Exorcist detected this from the

large amount of new registry operations added between versions,

shown in Table 4. These were principally composed of registry

read operations that identified the environment the binary was



SCORED ’22, November 2022, Los Angeles, California USA Barr-Smith et al.

Campaign Registry Filesystem Network
Signature
Matches

LotL

CCleaner 3444 370 1 0 0

Chiacoin 2767 186 0 4 13

DarkSide 0 0 0 4 0

DoFoil 0 0 0 0 0

NotPetya 0 0 0 0 0

D
ra
g
o
n
fl
y

Ewon 1 0 0 0 0 5

Ewon 2 5 0 0 37 9

MbConnect 1 2504 38 0 66 1

MbConnect 2 0 4 0 42 1

Mesa Imaging 0 0 0 17 2

So
la
r Sunburst 0 0 0 0 0

Supernova 0 0 0 0 0

Table 4: Overview of dynamic analysis results. The numbers

shown here represent amount of separate events in a mali-

cious binary not present in the previous benign version.

executing in. The trojanised binary also adds 2 write operations

that disabled future updates and changed network settings.

The malicious binary had the memory protection of ASLR re-

moved via the removal of the ‘DLLCharacteristic’ ‘HighEntropyVA’.

Exorcist’s packer detection heuristics also trigger upon the addi-

tion of sections, such as the ‘pdata’ section highlighted in Rascagnere’s

analysis of the incident [52]and a 0.25 increase in global file entropy.

It is the only campaign where there is additional network activ-

ity not present in the initial file. Researchers identified this ICMP

request to ‘224.0.0.0’ [22] as anti-VM functionality.

5.4 DoFoil

DoFoil miner, also known as SmokeLoader, deployed a trojanised

binary in place of the benign torrent application, ‘MediaGet’.

The static indicators for this binary are sparse, with binary sig-

nature removal and the obfuscation indicator of more code being

added to the trojanised binary. Exorcist’s heuristics classify bi-

nary signature removal and detection of obfuscation indicators as

a major indicator. There are also minor indications of packing - a

section ‘.rdata’ being added, with entropy of 7.45, and an OEP shift.

5.5 Dragonfly Campaign

Three ICS vendors’ software downloads were compromised. The

companies were eWON, MB Connect Line and Mesa Imaging and

the hacks occurred in June-July 2013 and in January 2014. These

three campaigns and their constituent malicious samples had dif-

ferent indicators across a variety of axes.

Dragonfly Ewon. There were two different binaries trojanised

during Dragonfly group’s Ewon campaign.

Exorcist identified additional LotL techniques implemented in

the trojanised binary not present in the benign version. The Find.exe

binary was used for reconnaissance, to identify certain characteris-

tics of a target environment:

C : \ Windows \ System32 \ f i n d . exe f i n d / i " no matching

d e v i c e s found " t a p__ l o g . t x t

Sc.exe and Taskkill.exe are leveraged to terminate the existing

‘Talk2mVpnService’ service, ensuring only the malicious program

version was running. This deviates from the usual purpose of task

stopping by malware, which is to stop local security services.

C : \ Windows \ System32 \ cmd . exe / c s c s t op Talk2mVpnService

C : \ Windows \ System32 \ cmd . exe / c t a s k k i l l / F /T / IM

Talk2MVpnService . exe
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Figure 2: Comparative frequency of dynamic analysis indi-

cators. The Y axis represents total number of maliciousness

indicators in the trojanised binary and not the initial file.

Exorcist detected these samples using native Windows system

binaries to obfuscate and proxy execution. This is a common tech-

nique used by malware to proxy execution and thereby enable

antivirus evasion. In the three aforementioned examples, there

were several native system binaries executed in a proxied execu-

tion chain. The first command listed below uses the Rundll32.exe

binary to run additional malicious functionality through a .dll:

C : \ Windows \ System32 \ r u n d l l 3 2 . exe C : \ Use r s \ ADMINI ~ 1 \

AppData \ Lo ca l \ Temp \ TmProvider . d l l RunDl lEnt ry

The second uses the Cmd.exe binary to proxy execution of further

malicious functionality through a .bat script:

C : \ Windows \ System32 \ cmd . exe / c C : \ Program F i l e s ( x86 ) \

eCatcher −Talk2M \ Talk2mVpnService \ D r i v e r s \ i n s t a l l . b a t

Exorcist detects another incidence of proxied execution via the

Cscript.exe LotL binary:

C : \ Windows \ sys tem32 \ c s c r i p t . exe nologo renametap . vbs

Mbconnect. Dragonfly trojanised an installer file and a tool

that checked the network environment produced by the ICS ven-

dor MbConnect to facilitate their campaign. Figure 2 shows ‘Mb-

Connect 1’ to exhibit dynamic activity in the form of filesystem

read operations and registry modifications not present in the initial

benign binary. Exorcist identified static indicators in‘MbConnect

1’. There is an increase in global binary entropy of 1.4, 4 sections

removed from the binary, a high entropy (7.56) section ‘.rsrc’ added

and Authenticode signature removal. There were also 313 less over-

all API calls, indicating potential IAT obfuscation.

‘Mbconnect 2’ contained static indicators of the addition of ma-

licious functionality into the benign initial binary. These indicators

are an entropy increase in the ‘.reloc’ section from 0.2 to 5.09 and

the removal of 5 sections.

For both binaries, Cuckoo signatures matched on the trojanised

binary but not the initial benign sample. The trojanised binary trig-

gered anti-sandbox, anti-debugger and anti-VM signatures, through
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Campaign
API
Calls

Sections
Entropy
Increase

OEP
Shift

Binary
Signing

Security
Characteristics

Altered

CCleaner -3 + − G# ✓ 1

Chiacoin +57 + −  ✓ ✓ 1
DarkSide +5 + − G# 3

Dofoil 0 + −  ✓ ✓

NotPetya 0  ✓

D
ra
g
o
n
fl
y Ewon 1 +136 +  ✓ ✓

Ewon 2 +68 + −  ✓ ✓ 1
Mbconnect 1 -313 + −  ✓ ✓ 1
Mbconnect 2 +74 + −  ✓

Mesa
Imaging

-3 −  ✓ 2

So
la
r Sunburst 0 −  ✓

Supernova 0 −  ✓

Table 5: Overview of static differential analysis results. In the

sections column, + denotes sections added to a PE file and −

denotes section removal. In the entropy column  signifies

entropy increase across the whole file and sections; whilst

G# signifies an entropy increase in a section or sections. In

‘OEP Shift’ and ‘Binary Signature’ columns, a tick denotes an

OEP shift or binary signature removal or modification.

Instructions Functions
Cyclomatic
Compexity

Campaign Total Total Overlap
Avg.
per
Block

Avg.
per
Block
Top

Total Flat Avg.
Avg.
Top

CCleaner 4/8 ✓ ✓ ✓ ✓

Chiacoin 2/8 ✓ ✓

DarkSide 5/8 ✓ ✓ ✓ ✓ ✓

DoFoil 3/8 ✓ ✓ ✓

NotPetya 3/8 ✓ ✓ ✓ ✓ ✓

D
ra
g
o
n
fl
y

Ewon 1 5/8 ✓ ✓ ✓ ✓ ✓

Ewon 2 3/8 ✓ ✓ ✓

Mbconnect 1 2/8 ✓ ✓ ✓

Mbconnect 2 3/8 ✓ ✓ ✓ ✓ ✓

Mesa
Imaging

5/8 ✓ ✓ ✓

So
la
r Sunburst 6/8 ✓ ✓ ✓ ✓ ✓ ✓

Supernova 4/8 ✓ ✓ ✓ ✓

Table 6: Overview of obfuscation analysis results. A ✓ repre-

sents an obfuscation indicator that passes the threshold of

suspiciousness within a given binary.

addition of suspicious API calls. ‘GetTickCount’ detects if malware

samples are executing in a virtualised environment [56]. Both files

add ‘ShellExecuteA’, ‘CreateProcessA’ and ‘CreateThread’ API calls,

to proxy execution. Exorcist detects other suspicious calls added

to both ‘MbConnect 1’ and ‘MbConnect 2’ to facilitate persistence

and registry manipulation, such as ‘RegSetValueExA’.

MesaImaging. Exorcist assessed this trojanised binary to con-

tain potentiallymalicious changes not in the benign binary.Memory

corruption prevention mechanisms present in the benign binary

were removed, the ‘DLLCharacteristics’ ‘NX_COMPAT’ (Data Exe-

cution Prevention) and ‘NO_SEH’ (Structured Exception Handling).

There was the addition of 32 suspicious API calls, a reduction in

total API calls of 3 and removal of sections from the file. 5 out of 8

indicators of obfuscation were present.

MesaImaging showed LotL activity to proxy execution via the

Rundll32.exe program, similar to the Ewon campaign:

0 1 2 3
Number of Samples Removing Security Properties

Dynamic
Base

High
Entropy

VA

NX
Compat

Terminal
Server
Aware

No
SEH

D
llC

ha
ra

ct
er
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tic

s

Figure 3: Frequency of dll characteristic alteration in samples

between builds in APT malware dataset.

C : \ Windows \ System32 \ r u n d l l 3 2 . exe C : \ \ Program F i l e s ( x86 )

\ \ MesaImaging \ \ Sw i s s r ange r \ \ sy s \ \ l i b u s b 0 . d l l

u s b _ i n s t a l l _ d r i v e r _ n p _ r u n d l l C : \ \ Program F i l e s ( x86 )

\ \ MesaImaging \ \ Sw i s s r ange r \ \ sy s \ \ l i b u s b SR . i n f

As with the Ewon campaign, Exorcist identified invocations of

LotL techniques through Cmd.exe and Rundll32.exe to proxy ex-

ecution of further malicious functionality:

C : \ Windows \ System32 \ cmd . exe / c C : \ Use r s \ ADMINI ~ 1 \ AppData \

Lo c a l \ Temp \ s e tup . exe & c : \ windows \ sys tem32 \ r u n d l l 3 2 .

exe C : \ Use r s \ ADMINI ~ 1 \ AppData \ Lo ca l \ Temp \ tmp687 . d l l ,

RunDl lEnt ry

5.6 DarkSide Nullsoft Trojan

The ransomware group ‘DarkSide’ trojanised a version of the ‘Null-

Soft Installer’ for ‘SmartPSS’ security camera monitoring software

after compromising a network.

Cuckoo signatures matches identified anti-VM techniques query-

ing the virtualised environment. The remaining indicators of ma-

liciousness identified by Exorcist in ‘MbConnect 1’ are static -

showing 5 additional suspicious API calls, notably ‘AdjustToken-

Privileges’ and ‘SetFileSecurityA’, that show permissions modifica-

tion. Obfuscation indicators show additional code and increased

code complexity. These static properties reveal attempts to pack

and obscure elements of program execution, including a marginal

entropy increase in several sections.

5.7 Chiacoin

In May 2021, the ChiaCoin wiki on GitHub was edited to replace a

link to the legitimate installer with a trojanised binary. Less sophis-

ticated than other attacks, with the binary added and removed less

than 48 hours later, Exorcist detected several malicious indicators.

This binary deployed evasion techniques to prevent detection but

did not attempt to masquerade as the benign installation binary. As

shown in Table 4, the trojanised Chiacoin binary displayed different

post-execution behaviour by reading 184 files and deleting 2.

6 EVALUATION

In this section, we examine the APT case studies Exorcist analysed,

to assess the prevalence of indicators. We also describe the setup

and results of false positive experiments conducted to ensure the

reliability and accuracy of Exorcist.
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Static Dynamic

Campaign Filetype
API
Calls

Packing
Binary
Signing

Obfuscation
Security (Dll)
Characteristics

LotL
Registry

Modification
Network
Activity

Filesystem
Modification

Score

CCleaner EXE ⃝ ⃝ ⃝ ⃝ ⃝ G# G# ⃝ ⃝ 1

Chiacoin EXE ⃝ G# ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 0.5

DarkSide MSI ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 0

So
la
r Sunburst DLL ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 0

Supernova DLL ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 0

Table 7: Overview of detection results for false positives. The properties identified are those that are in the second benign

binary version but not the initial benign version.  is a major indicator of maliciousness. G# is a minor malicious indicator.

6.1 Dynamic Analysis Indicators

The different indicators extracted from Exorcist’s dynamic execu-

tion of the binary varied in their frequency within the APT supply

chain attack dataset. In Table 4, we tabulate the different indicators

Exorcist’s heuristics detected.

We visualise the frequency of indicators of maliciousness within

our APT dataset in Figure 2. We can observe that there is a large

variance between different indicator types. For instance, network

activity is scarce, where only CCleaner was identified to have mali-

cious network indicators during sandboxed execution.

6.2 Static Analysis Indicators

In Table 5, we enumerate the static properties indicating malicious-

ness identified by Exorcist. We observe that all campaigns contain

multiple static indicators of maliciousness, particularly entropy in-

creases and shifts in the OEP for given binaries.

We report our obfuscation analysis results in Table 6. All cam-

paigns we analysed revealed indicators of obfuscation. This is in

contrast to our false positive testing, wherein there were no indica-

tors of obfuscation, as we report in Table 7.

Figure 3 shows the frequency of ‘DLLCharacteristics’ removed

between build versions in our case studies. ‘DLLCharacteristics’ are

a misnomer, as they refer to security properties of a given PE file.

Apart from ‘Terminal Server Aware’, all ‘DLLCharacteristics’ altered

by the campaigns we analysed have direct security implications.

6.3 False Positive Testing

Exorcist is designed to be implemented as part of a build pipeline,

where malicious trojans will be exceptionally rare event. It is there-

fore important that Exorcist has a low false positive rate.

We evaluate whether Exorcist is susceptible to false positive

errors via downloading successive released versions of software

that are known to be benign and processing them in Exorcist. We

show the results in Table 7.

In this analysis, we evaluate and test 10 different samples from 5

campaigns. We could not obtain binaries for the other campaigns,

due to the aforementioned scarcity we describe in Section 2.

The only static indicators are those of packing, in the second

benign Chiacoin binary. These packing indicators are due to the

removal of 4 sections and the addition of another section. This addi-

tional section has high entropy (7.999), the same as the global binary

entropy. Notably, there were no suspicious indicators detected by

obfuscation detection algorithms.

There are two incidences of dynamic maliciousness within the

false positive dataset, both of which occur with the legitimate

CCleaner binaries. The CCleaner binary has added a use of LotL

binaries between its benign versions. Exorcist detects the usage

of the Ie4uinit.exe binary:

C : \ Windows \ SysWOW64 \ i e 4 u i n i t . exe −ShowQLIcon

The preceding invocation of Ie4uinit.exe is benign, with the code

for Cuckoo Sandbox stating that invocation of this LotL binary with

this parameter should be ignored[11].

There is a true false positive of 4 registry operations conducted

in the latter version of CCleaner not present in the initial version.

Exorcist’s heuristics identify these as a minor amount of addi-

tional registry accesses, although networking registry elements

and error reporting are registry keys which malware may access.

7 DISCUSSION

One insight from the results of our testing is the prevalence of

indicators of obfuscation. We discovered that these obfuscation and

packing indicators were present in either minor or major form in all

of the malicious samples analysed. This differed from our initial ex-

pectation of a spectrum of sophistication for these campaigns, with

more sophisticated attacks leaving scarce indicators of obfuscation.

Another surprising result was the prevalence of a subset of indi-

cators. All samples analysed showed the addition of static character-

istics indicatingmaliciousness. These included shifts in OEP, section

addition and subtraction or most commonly entropy increases.

7.1 Limitations

We do not extend our analysis to Linux Executable Linker Format

files or Mac’s Mach-O file format as many of Exorcist’s analysis

components only operate upon PE files on the Windows OS.

Our scope is limited to binaries that have been trojanised during

the supply chain, so we exclude notable real-world supply chain

attacks such as Nobelium, Log4J and Hafnium [42, 51] attacks.

Despite thorough simulation with a range of parameters, we

could not extract dynamic behaviour from .dll’s. The explanation

for this is that .dlls are imported as part of a larger software suite.

There are many commercial and academic research projects that

audit and perform static code analysis, however direct analysis of

the code preceding its compilation into an executable is not in scope

for our research [2, 18, 19, 49, 64].

8 RELATED WORK

There has been recent research into open-source supply chain se-

curity [33, 46, 47, 59], but little published research into the security

of closed-source supply chains and how to detect compromised

binaries within them, leaving a gap in the literature.

There has been work directly related to the security of open-

source software supply chains. Of note are measurement studies
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conducted by Duan, Ohm and Zimmerman et al. [20, 46, 69], how-

ever these papers investigate the injection of malicious functional-

ity into the supply chain of open-source software via interpreted

languages, rather than compiled binaries.

Recent academic papers analysed the incidents where Debian

OpenSSL and Juniper’s Dual EC had purposefully inserted cryp-

tographic flaws [12, 65]. Detection and analysis of hardware and

firmware backdoors are studied in the academic literature [17, 29,

57, 62, 66].

These papers highlight the growing awareness of this attack

type in the academic community.

Static Analysis. Existing works investigate similar areas to the

static analysis functionality that we include within our system.

Kim et al. measured abuses of binary signing via Authenticode

across a large malware dataset [34]. Our identification of malicious

functionality via Windows API calls builds upon the ransomware

detection developed by Kolodenker et al. [37].

Other work has similarly recognised the limitations of static

analysis for detecting maliciousness in purposely obfuscated bina-

ries [1] and detection of malware in general [44].

Binary Similarity. Binary analysis has been covered exten-

sively in the security literature. Egele et al. dynamically executed

binaries to determine their similarity [23]. BinDiff is used for binary

similarity detection, with DeepBinDiff augmenting its capabilities

using machine learning [21]. Ming et al. [43] implement a system

using static and dynamic analysis to check system call equivalence.

Dynamic Analysis. Academic analysis of malware by detona-

tion in sandboxes began on the Anubis platform, with papers that

observed the behaviour of malware [7, 8, 36]. VirusTotal has since

become the default analysis platform, with sufficient material for

Zhu et al. to analyse 15 academic papers using the platform [68].

9 CONCLUSION

In this paper, we have presented Exorcist, a system substantiating

a differential analysis approach to detecting trojanised binaries in

closed-source supply chains. We took a first step in the academic

study of detecting trojanised binaries in software supply chains.

We tested this system against 12 real-world supply chain attacks to

evaluate its accuracy.
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Campaign Benign Version Infected Version Benign Version Release Date Infected Version Release Date

CCleaner v5.32 v5.33 2017-06-29 2017-08-03

Chiacoin ChiaSetup-1.1.4.exe ChiaSetup-1.1.4.exe 2020-09-27 2020-08-01

DarkSide V2.002.0000009.0.R.190426.exe V2.002.0000007.0.R.181023-General-v1.exe 2009-12-05 2020-08-01

DoFoil 2, 1, 0, 0 2, 1, 0, 0 2017-10-27 2018-02-06

NotPetya ZvitPublishedObjects188 ZvitPublishedObjects189 2017-06-21 2017-06-12 15

D
ra
g
o
n
fl
y

Ewon 1 3.1.0.85 N/A 1999-04-08 2007-03-31

Ewon 2 4.0.0.13073 4.0.0.13073 1992-06-19 2007-03-31

MbConnect 1 1.1.1.0 1.1.1.0 2014-06-24 2013-07-14

MbConnect 2 setup_1.0.1.exe setup_1.0.1.exe 1992-06-19 2013-07-14

Mesa Imaging SwissrangerSetup1.0.14.706.exe SwissrangerSetup1.0.14.747.exe 2009-12-05 2011-05-28

So
la
r Sunburst 2020.2.15300.12766 2020.2.5300.12432 2020-08-11 2020-05-11
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