
Jit-Picking: Differential Fuzzing of JavaScript Engines
Lukas Bernhard

Ruhr-Universität Bochum
Germany

lukas.bernhard@rub.de

Tobias Scharnowski
Ruhr-Universität Bochum

Germany
tobias.scharnowski@rub.de

Moritz Schloegel
Ruhr-Universität Bochum

Germany
moritz.schloegel@rub.de

Tim Blazytko
Ruhr-Universität Bochum

Germany
tim.blazytko@rub.de

Thorsten Holz
CISPA Helmholtz Center for

Information Security
Germany

holz@cispa.de

ABSTRACT

Modern JavaScript engines that power websites and even full appli-
cations on the Web are driven by the need for an increasingly fast
and snappy user experience. These engines use several complex
and potentially error-prone mechanisms to optimize their perfor-
mance. Unsurprisingly, the inevitable complexity results in a huge
attack surface and various types of software vulnerabilities. On
the defender’s side, fuzz testing has proven to be an invaluable
tool for uncovering different kinds of memory safety violations.
Although it is difficult to test interpreters and JIT compilers in an
automated way, recent proposals for input generation based on
grammars or target-specific intermediate representations helped
uncovering many software faults. However, subtle logic bugs and
miscomputations that arise from optimization passes in JIT engines
continue to elude state-of-the-art testing methods. While such flaws
might seem unremarkable at first glance, they are often still ex-
ploitable in practice. In this paper, we propose a novel technique
for effectively uncovering this class of subtle bugs during fuzzing.
The key idea is to take advantage of the tight coupling between a
JavaScript engine’s interpreter and its corresponding JIT compiler
as a domain-specific and generic bug oracle, which in turn yields a
highly sensitive fault detection mechanism. We have designed and
implemented a prototype of the proposed approach in a tool called
Jit-Picker. In an empirical evaluation, we show that our method
enables us to detect subtle software faults that prior work missed.
In total, we uncovered 32 bugs that were not publicly known and
received a $10.000 bug bounty from Mozilla as a reward for our
contributions to JIT engine security.

CCS CONCEPTS

• Security and privacy→ Browser security.

KEYWORDS

Fuzzing, Software Security, Differential Testing, JIT Engine,
Browser

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560624

ACM Reference Format:

Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko,
and Thorsten Holz. 2022. Jit-Picking: Differential Fuzzing of JavaScript
Engines. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’22), November 7–11,
2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3548606.3560624

1 INTRODUCTION

JavaScript is the predominant programming language on the Web,
where the vast majority of all websites use JavaScript code to im-
plement tasks such as content loading, animations, form valida-
tion, data logging, or similar functionality. Generally speaking,
web browsers include a JavaScript engine that executes the corre-
sponding code on the client side. In recent years, also server-side
JavaScript received a lot of attention via frameworks such asNode.js,
which enable a simpler data sharing between client- and server-side
code. In fact, npm, the package manager for Node.js, is the largest
package registry in the world. The JavaScript language itself of-
fers first-class functions, is dynamically typed, single-threaded, and
offers prototype-based object-orientation.

In practice, three different JavaScript engines are widely used:
First, Google’s v8 engine was developed by the Chromium Project
for both the Google Chrome and Chromium web browsers, but it
is also used by projects such as Node.js and CouchDB. Second, the
Mozilla Foundation maintains SpiderMonkey, which is used in var-
ious Mozilla projects, most notably the Firefox browser. Finally,
JavaScriptCore (JSC) is a framework that provides a JavaScript
engine for WebKit implementations, which are commonly used in
the Apple ecosystem with the Safari browser on macOS and iOS.
As part of the browser wars, the competition for dominance in the
browser usage share, these engines played a major role given that a
faster and snappier user experience was a main factor driving this
competition. One crucial insight is that interpreted code is tradition-
ally slower than native code—JavaScript as an interpreted language
especially suffers from this disadvantage. Thus, developers opted
to deploy Just-In-Time (JIT) compilers in JavaScript engines to
compile frequently exercised code paths and then execute them
at higher speeds. While conceptually simple, JIT engines employ
sophisticated analysis and optimization passes before emitting na-
tive code. As a result of pushing for ever-increasing performance,
these engine implementations are heavily optimized for speed and

https://doi.org/10.1145/3548606.3560624
https://doi.org/10.1145/3548606.3560624

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz

efficiency; many novel techniques [49, 51] have been developed
specifically to execute the code in a fast and efficient manner.

Modern JavaScript engines are highly complex pieces of soft-
ware, e. g., the Google v8 engine consists of about 2.3 million lines
of code, and most of it (approx. 1.6 million LoC) is implemented
in the memory-unsafe programming language C++ [55]. Given the
huge practical importance of these tools and their wide practical
deployment, they represent an attractive target for attacks. At the
time of writing, vulnerability brokers such as Zerodium pay more
than 200K USD for remote code execution exploits for common
browsers [66], and JavaScript engines play a key role in unwillingly
supplying a steady stream of exploitation primitives. In practice,
an adversary has fine-grained control over the JavaScript code that
is executed in browsers—they can twist every detail and abuse
even the smallest inconsistencies arising from subtle bugs. More
specifically, an attacker can craft full exploits from one (or multi-
ple) inconsistencies that cause a memory corruption, even if the
inconsistency itself is not a memory corruption vulnerability and
does not lead to a memory safety violation and a resulting crash.

In an attempt to remediate attacks, recent research has focused
on techniques for testing JavaScript engines for potential security
vulnerabilities, and especially fuzz testing (fuzzing for short) played
a particularly important role [19, 21, 23, 30, 45, 47, 60]. All the pro-
posed fuzzing approaches have in common that they are highly
optimized towards input generation to JavaScript engines, i. e., they
attempt to generate diverse JavaScript code to reach as many dif-
ferent code locations as possible. The typical feedback loop based
on maximizing code coverage is very successful for other types of
software as well [14, 36, 48]. As a result, many different types of
vulnerabilities have been detected. However, existing techniques
rely on rather general bug detection oracles to detect software
faults, e. g., sanitizers [52], or other methods to detect memory
safety vulnerabilities. Unfortunately, this is a coarse-grained metric
in practice: Many bugs do not crash the program execution or vio-
late memory safety. The complex, optimizing nature of JIT engines
often causes only small inconsistencies or slightly wrong results
due to logic bugs that are missed by current bug detection ora-
cles. This leads to a somewhat paradox situation: Current fuzzing
techniques are already able to exercise logic bugs in the JavaScript
engines, but they lack techniques to recognize that they have found
something interesting (e. g., an inconsistency in the executed code).
More specifically, current methods achieve excellent code coverage,
but the actual symptoms of the exercised bugs are too subtle for
non-domain-specific bug oracles to detect.

To overcome this challenge, recent works proposed to use differ-
ential testing for JavaScript engines [32, 38, 39]. The basic idea is to
execute a given input in multiple programs that implement the same
functionality, and check for observable differences in their behavior.
If differences are found, a logic bug has likely occurred. However,
these recent works compare different JavaScript engines against
each other and, in particular, they do not target JIT compilation
itself. Hence, existing methods cannot spot subtle changes intro-
duced during the JIT optimization process, which is a major source
of vulnerabilities in practice. Furthermore, testing different engines
against each other requires a significant effort for cross-engine
normalization: JavaScript is an evolving language and is not free of
implementation-defined behavior (e. g., calling array.sort() with

a comparator function not inducing a total order on the elements
causes the array to be sorted in an engine-specific manner). As a
result, many false positives occur, each requiring potentially time-
consuming manual analysis. Another drawback is that different
engines support different features; hence, only the intersection can
be tested (leading to reduced code and feature coverage).

In this paper, we present the design and implementation of Jit-
Picker, an approach that effectively finds inconsistencies caused
by misguided JIT optimizations using differential fuzzing. We aim
at detecting logic bugs manifesting as miscomputations, since such
software faults are hard (if not impossible) to find with current state-
of-the-art methods. The basic idea is to test the JavaScript engine
against itself by executing the JavaScript code twice: once with the
JIT compiler enabled and once without it, i. e., solely relying on
the interpreter. A comparison of the behavior enables a domain-
specific and generic bug oracle which can detect even subtle bug
symptoms beyond the memory safety violations considered in prior
work. While the high-level idea is simple, its correct and efficient
implementation is challenging for several reasons: (1) We must
ensure deterministic engine behavior to prevent false positives,
(2) we need to implement side-effect free observation (“probing”)
of states to reduce false negatives, and (3) we must test different
JIT levels and optimization passes to increase true positives.

We have implemented a prototype of our approach, Jit-Picker,
based on Fuzzilli [19]. We build extensions to the execution model,
incorporate an efficient probing mechanism into the generated
input, and instrument all three major JavaScript engines to support
our approach (e. g., by suppressing non-deterministic behavior of
language builtins or out-of-memory exceptions). Our evaluation
results show that Jit-Picker can effectively detect new bugs in
JavaScript engines that have already been thoroughly tested: In total,
we found 32 previously unknown bugs in the tested engines and
disclosed our findings to the affected vendors; most of these issues
have been patched at the time of writing. An analysis of the detected
faults indicates that they do not manifest as segmentation faults or
sanitizer violation conditions, hence these vulnerabilities cannot
be detected using state-of-the-art methods. Mozilla rewarded our
contribution to JIT security with a bug bounty of $10.000 and plans
to internally deploy Jit-Picker for testing their engine.

Contributions. In summary, we make the following contributions:
(1) We propose a novel approach to efficient differential testing

that turns a JavaScript engine against itself: We carefully
inject state probes to compare the runtime behavior of the
JavaScript interpreter with its own JIT compiler, enabling
us to uncover software faults introduced by misguided opti-
mization passes.

(2) We show how to use this method as a bug oracle with un-
precedented sensitivity: It alerts the fuzzer to even small
inconsistencies during execution, allowing us to identify
subtle, yet potentially high-impact bugs that state-of-the-art
oracles are blind to. We find that the identified faults poten-
tially have high security impact in the victim’s browser.

(3) We implemented a full prototype of the proposed approach
in a tool called Jit-Picker and evaluated it for three major
JavaScript engines. In an empirical evaluation, we identified
32 bugs. A closer analysis reveals that most of the bugs we

Jit-Picking: Differential Fuzzing of JavaScript Engines CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

1 function f(a) {
2 return a + a;
3 }
4
5 for (let i = 0; i < 100000; i++) {
6 // "train" engine for numeric addition
7 f(1.0);
8 }
9 // calling f with a different type causes a
10 // bailout due to mismatching types
11 f("abc");

Listing 1: Example use case for JavaScript JIT compilation

found had a lifespan of more than a year. We disclosed the
identified bugs to the respective vendors in a coordinated
way, most bugs have already been fixed.

To foster research on this topic, we release the source code and
all research artifacts at https://github.com/RUB-SysSec/JIT-Picker.

2 CHALLENGES SECURING JAVASCRIPT JIT

Securing JavaScript (JS) JIT engines is notoriously difficult [8, 16,
31, 43]. Despite various techniques proposed in the literature [19,
21, 30, 45, 47, 60], the effective identification of software faults in
JS engines is still a challenging problem. In the following, we first
discuss the challenges of JIT-compiling code. We then present an
overview of current techniques employed to find bugs and discuss
their limitations in practice.

2.1 JavaScript JIT Compilation

Given that the performance of JS engines is critical for the user
experience when surfing the Web, the time when JS code was in-
terpreted statement by statement has long passed. Many types of
performance improvements were implemented and today’s JS en-
gines determine at runtime which functions are hot, i. e., executed
particularly often, and compile these functions just-in-time (JIT) to
native machine instructions.

As a matter of fact, JS code is dynamically typed, which makes
it difficult to optimize correctly. Consider the example code shown
in Listing 1. The statement a + a within function f() (line 2) has
different semantics depending on the type of the operand: Numeric
addition for numbers, concatenation for strings, and so on. Hence,
the interpreter of the JS engine collects runtime type information
which in turn are fundamental to optimizing the function for fre-
quently used types. In this example, a is observed to hold values of
type Number for a large number of function calls in the for loop in
line 7. Consequently, during the JIT compilation phase, the compiler
speculates that these types will remain the same going forward, and
emits native code to quickly perform the numeric addition. Such
speculative optimizations enable efficient code that is specifically
optimized per data type.

However, the dynamic typing of JS implies that assumptions
about observed types might be invalidated in the future. In our ex-
ample, this is due to the function call of f()with a string parameter
in line 11. As a consequence, it is mandatory that JIT compilers emit
additional type checks which validate the applicability of their opti-
mization assumptions at runtime. Failing validations cause a bailout
(i. e., a transition from compiled code back to the interpreter), where

the observed type information is updated and taken into account
for a potential recompilation.

Any run-time validation not resulting in a bailout consumes
precious CPU cycles without actually progressing the program’s
execution. Therefore, JS engines try to remove unnecessary checks,
e. g., those for assumptions which can be proven to hold under all
circumstances. As an example, since calls to many built-in Math
functions return values of type Number, code optimization passes
might emit native arithmetic instructions without further type
checks. Additionally, JIT compilers make use of traditional compiler
optimization techniques (e. g., alias analysis, range analysis, dead
code elimination, loop-invariant code motion, etc.) to remove even
more run-time checks. As a result, JIT compilation yields substantial
performance improvements over interpreted code and is used by
all JS engines in current browsers.

2.2 Fuzzing JavaScript Engines

Given the complexity of JIT compilers, they result in a multitude
of bugs in JS engines [8, 16, 31]. To find these bugs, we could use
traditional bug finding techniques such as static or dynamic testing.
Particularly fuzzing has received a lot of attention in both academia
and industry over the past years [2, 4, 19, 23, 47, 65]. In essence, a
fuzzing framework generates billions of (random) test cases in an
automated way and uses them as input for a program under test,
expecting to cause diverse behavior. Ideally, such a randomized test
case triggers unforeseen edge cases in the JIT engine’s optimization
passes, leading to the identification of new bugs.

However, fuzzing JS engines via traditional testing methods
proves ineffective in practice: JS code is highly structured, and,
for meaningful JS execution to occur, the provided JS code needs
high degrees of both syntactic and semantic correctness. As a re-
sult, common byte-level fuzzers such as AFL [65] and its many
variants (e. g., [3, 6, 14]) are unable to generate valid JS test cases
or effectively mutate existing ones. Hence, generic grammar-based
fuzzers were developed to help increasing the quality of JS in-
put generation [23, 60]. Following that, specific input generation
techniques have been proposed that represent valid JS code in
syntax-aware and semantics-aware formats, e. g., in intermediate
representations [9, 19] or abstract syntax trees (ASTs) [2, 47]. These
representations allow fuzzers to produce high-quality test cases,
which achieve a high degree of code coverage. As a consequence,
such techniques have proven effective in practice for finding com-
plex software faults.

To detect if a produced input triggers a bug, fuzzers observe
if the program under test reaches a faulty state. Generally speak-
ing, current JS engine fuzzers rely on the following bug oracles—
mechanisms to indicate faulty program behavior—to detect bugs:

• Segmentation Faults and Signals. A faulty state is de-
tected if the engine violates the execution model of the CPU,
such as unmapped memory accesses, division by zero, or
similar illegal behavior.

• Memory-safety Sanitizers. Sanitizers such as ASAN or
MSAN [50, 52, 53] are approaches that use compile-time
instrumentation to detect software bugs such as uninitial-
ized memory, use-after-free conditions, and similar memory
safety violations. Sanitizers also detect software faults in

https://github.com/RUB-SysSec/JIT-Picker

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz

1 function miscompute(n) {
2 n |= 0;
3 if (n < 0) {
4 let v = (-n) | 0;
5 return Math.abs(n); // miscomputation here
6 }
7 }

Listing 2: A simplified trigger of a miscomputation in JSC

(CVE-2020-9802). This snippet can be synthesized by auto-

mated testing methods such as fuzzers, but does not exhibit
a segmentation violation. Consequently, state-of-the-art ora-

cles will not consider this input as interesting.

cases where the JS engine does not trigger a CPU signal
but merely violates memory safety (e. g., an out-of-bounds
access or uninitialized read). However, as sanitizers are part
of the compiler toolchain, only the C/C++ components are
instrumented. Support for sanitizing JIT-compiled code is
not yet available for JIT compilers used in browsers. Broadly
speaking, sanitizers re-introduce some of the guarantees
included in memory-safe languages by design as run-time
checks. Still, domain-specific logical flaws generally do not
manifest as a sanitizer violation.

• Assertions.Assertions are run-time checkswhich have been
manually inserted by a developer to express an invariant
which is suspected to be upheld during execution—both in
the current version and after later changes to the engine.
Assertions within the code allow for the detection of domain-
specific logical inconsistencies. However, manually adding
and maintaining assertions as an oracle does not scale and
only alerts to bugs breaking explicitly encoded invariants.

In summary, JS engines currently rely on traditional bug oracles to
detect faulty behavior. Unfortunately, these oracles lack a rigorous
and exhaustive approach to identify common bugs such as logic
flaws. In particular, current state-of-the-art oracles are not precise
enough to identify subtle bugs, unless the violation is severe enough
to trigger a sanitizer warning or breaks an invariant explicitly
considered by a developer in form of an assertion.

2.3 From Buggy Snippets to Crashing Inputs

Despite the recent progress in JS fuzzing, critical security vulnerabil-
ities are still uncovered by humans on a regular basis that cannot be
found with state-of-the-art fuzzing approaches. Examples for this
observation include complex logical errors and hard-to-reach code
locations that depend on a specific engine state to trigger a crash.
As an example, consider the JS snippet shown in Listing 2 triggering
a miscomputation in JSC. Due to a logical flaw in its common subex-
pression elimination optimization, the result of Math.abs(n) may
return a negative number at runtime. This miscomputation cannot
be detected by traditional bug oracles, as the miscomputation itself
does not result in a crash or memory safety violation.

Groß [20] showed that this simple miscomputation is sufficient to
be turned into a memory corruption vulnerability (CVE-2020-9802).
Let us analyze the example shown in Listing 3 which turns this
miscomputation from Listing 2 into an actual memory corruption
condition. First, the code stores the miscomputed value in variable

1 function oobBug(arr, n) {
2 n |= 0;
3 if (n < 0) {
4 let v = (-n)|0;
5 // miscomputation here may return negative number
6 let idx = Math.abs(n);
7 // following code triggers a segfault
8 // due to OOB access
9 if (idx < arr.length) {
10 arr[idx]; /* optimizer assumes idx is a positive number
11 and smaller than the length or the arr, therefore the
12 bounds-check can be eliminated */
13 }
14 }
15 }

Listing 3: Example code [20] for turning the triggered mis-

computation in JSC (CVE-2020-9802 Listing 2) into an actual

memory safety violation that can be exploited.

idx (line 6) and later uses it to access array arr (line 10). Despite
not knowing the concrete value of idx, the optimizer may assume
the following properties:

• as a result of Math.abs(), idx has a positive value
• when accessing the array, idx is smaller than the length of
arr due to the guarding if clause in line 9

Combining these two properties, the access to arr is ruled to be
always within the bounds of the array. Runtime bounds checking
of the array access is thus deemed unnecessary and eliminated for
performance reasons. As a consequence, the array access at a nega-
tive index is not guarded against at runtime. Therefore, the memory
access might be outside of the intended bounds. Adversaries can
use this memory safety violation as a stepping stone to compromise
the entire process.

As we can see, JS bugs triggering a miscomputation have the
potential to be a precursor for a memory corruption. However,
the corresponding steps are highly engine-specific and entirely
depend on the particular miscomputation. Automatically detecting
such bugs via traditional bug oracles would mandate fuzzers to
generate JS code which leverages intricate properties of engine-
specific optimization passes. Unfortunately, this is entirely out of
reach for the current generation of fuzzing methods.

As a key insight, we identify a significant gap between the ability
to generate inputs triggering bugs in JIT engines, and the capability
to detect them as such. To identify subtle bugs during JS JIT execu-
tion, we need to detect miscomputations given no carefully crafted
exploit (which traditional oracles require to detect the bug), but the
type of incidental trigger that fuzzers are able to generate. On a
conceptual level, what we require for JS JIT fuzzing is comparable
to ASAN [50] being able to detect memory safety violation without
a segmentation fault crashing an ordinary C program.

3 DETECTING SUBTLE BUGS IN JS ENGINES

To overcome the shortcomings of these imprecise bug oracles, we
propose to use differential fuzzing to receive more fine-grained feed-
back on miscomputations. Generally speaking, differential fuzzing
compares the behavior of multiple implementations of a given func-
tionality for the same input [10, 24, 28, 38, 42]. Given the highly
dynamic nature of JS, it is not feasible to use this method to test the

Jit-Picking: Differential Fuzzing of JavaScript Engines CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

behavior of different JS engines to uncover bugs. The JS standard
leaves too much room for interpretation, hence different implemen-
tations exhibit several differences in their behavior.

In contrast, we propose to compare a single JS engine against it-
self. Broadly speaking, a JS engine contains two implementations to
execute JS code with identical semantics: a JS interpreter evaluating
statement by statement and a JIT compiler producing aggressively
optimized, native machine code. Depending on the JS engine, one
or multiple intermediate JIT tiers [17] sit between the interpreter,
and the aggressively optimizing compiler. These tiers offer a middle
ground between the low startup overhead of the interpreter and
the efficient code execution of a fully optimizing JIT engine.

To uncover software faults in JS engines, we can compare the
execution of the interpreted code to the execution of code generated
by the JIT compiler. We can selectively allow all JIT tiers to run or
(optionally) individually disable them. If both executions perform
the same computation, we can ignore this test case. If, however, the
two executions differ in their computation, we can use this as a fine-
grained oracle to identify the test case as triggering a bug. A major
technical challenge is to implement such a comparison mechanism
in an effective way given the highly optimized nature of today’s JIT
engines. A naive implementation of such a comparison mechanism
would simply make all computations externally visible, e. g., by
printing the result to stdout. Unfortunately, this rather crude way
of observation significantly interferes with the machinery of the JIT
engine. The mere fact that the result of some computation becomes
externally visible (e. g., by printing) suppresses dead-code elimina-
tion. Alongside dead-code elimination, optimizing JIT compilers
implement a whole range of classic optimizations (e. g., instruction
reordering, scalar replacement, and constant folding [1]) and JS-
specific passes (e. g., garbage-collector modeling). The applicability
of individual optimizations depends on the result of analysis passes
(e. g., alias analysis or type analysis [25]) and profitability assess-
ments. While all observation techniques incur some interference
w.r.t. optimization and analysis passes, a well-designed mechanism
minimizes its impact. Failing to reduce interferences stifles opti-
mizations passes and consequently suppresses miscomputations.

With the optimizing nature of JIT engines in mind, let us revisit
the code snippet reproducing CVE-2020-9802 in Listing 3. Our goal
is to simplify the code such that diverging behavior becomes ap-
parent. Such a minimized snippet is actually shown in Listing 2,
the starting point of our discussion. It triggers the same miscompu-
tation, and the triggering code snippet is much easier for existing
fuzzing methods to generate. Unfortunately, current bug oracles
based on segmentation faults, sanitizers, or assertions are blind to
the mere fact that a miscomputation occurred. As a consequence,
these existing methods fail to correctly detect the bug. This moti-
vates our work for developing a more sensitive and effective bug
oracle, which allows us to detect subtle triggers of bugs in JS code.

4 DESIGN

Figure 1 shows a high-level overview of Jit-Picker, our differential
fuzzing approach to detect even subtle software faults in JS JIT en-
gines. With this approach, we aim to efficiently find logic bugs and
miscomputations that have previously been hard to identify. At the
core of our approach, we perform two executions of fuzzing inputs,

Fuzzer

Input

Probe Injection

Interpreter JIT-Compiler

execution hash execution hash′

BinarySource

➍

➎

➏ ➏

➑ ➑

➐
probe

result
➐

probe

result

➋ ➌

➊

Feedback

Figure 1: Overview of our design. Fuzzing inputs are passed to

both the interpreter and optimizing JIT-compiler; comparing

their internal state during execution (using probes injected

into the input) reveals miscomputations.

once with the JIT compiler enabled and once solely using the en-
gine’s interpreter. Side-by-side executions in the same engine allow
us to compare states with high fidelity and detect miscomputations
even if no actual memory corruption has occurred.

To prepare fuzzing, the JS engine is compiled ➊ with code in-
strumentation. The instrumentation emits runtime code coverage
information which assists the fuzzer in identifying interesting in-
puts. Then, the JS engine is instantiated twice. One instance ➋ is
configured via command-line arguments such that JIT compilation
is prohibited. Hence, the engine has to fall back to interpreting the
JS code statement by statement. Note that this execution mode is
slower, albeit significantly less likely to contain bugs given that
the interpreters are mature and have been extensively tested. The
second JS engine instance ➌ is configured to eagerly JIT-compile
during execution. As an additional optimization, we selectively
enable/disable the various JIT-tiers, optimizations, and code genera-
tion parameters. Next, the fuzzer generates JS inputs ➍. Jit-Picker
now post-processes the generated inputs by injecting a probing
mechanism. This centerpiece ➎ of our work extracts miscomputed
results with unprecedented sensitivity. After probe injection, each
input is executed ➏ by both instances of the JS engine. During both
executions in the respective JS engine instances, the injected probes
extract ➐ a subset of computational results (e. g., value of a local
variable) and sends ➑ them to the fuzzer. The fuzzer now compares
whether the extracted computations are identical. Deviations indi-
cate that one of the two instances suffers from a miscomputation.
Inputs provoking such diverging behaviors are extracted and stored
for later analysis.

4.1 Key Components

After this overview, we now present some key components in more
detail while deferring the actual probing mechanism to Section 4.2.
First, we describe a way to instantiate the JIT engine ➌ such that
miscomputations become more likely. We proceed with input gen-
eration ➍, the process of generating individual JS files. Afterwards,

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz

we focus on the requirements posed by efficient differential fuzzing
when actually executing individual inputs ➏. In particular, match-
ing the side by side execution in the interpreter and the JIT compiler
requires a level of determinism not normally available in JS engines,
i. e., we must identify and remediate potential non-deterministic
behavior to avoid false positives.

JIT Instantiation ➌. When instantiating the JS engine with JIT
compilation enabled, we probabilistically select configuration op-
tions that influence code generation, e. g., inlining heuristics or
register allocation. Furthermore, for JS engines including multiple
JIT tiers, we randomly disable a subset. Past research [18] demon-
strated that this randomization process increases the diversity of
code paths exercised, and in turn increases the likelihood of uncov-
ering miscomputations.

Input Generation ➍. Emitting JavaScript for detection of mis-
computations during JIT compilation poses a major challenge for
input generation. Not only must inputs pass syntactic and seman-
tic validation, the generated code must also trigger JIT compila-
tion. This happens only for code deemed hot, i. e., executed of-
ten enough to warrant further optimization. Therefore, language-
specific input generation based on intermediate representation (IR)
of JavaScript [9, 19] seems most suitable. As the focus of our work
lays on increased bug detection abilities, we will not discuss gener-
ation and mutation strategies in more detail. We show in Section 6
that relying on off-the-shelf JS generation techniques is sufficient
for the purpose of identifying miscomputations.

Deterministic Execution ➏. The next step after generating in-
dividual inputs is executing them in two different instances of the
engine, once in interpreter mode and once with JIT compilation en-
abled. The purpose of these executions is to detect deviating results
between the two, in search of miscomputations. However, there is
a multitude of reasons why such differences can be entirely benign,
e. g., JS offers language-builtin functions which either purposely
return non-deterministic (e. g., Math.random) or timing-dependent
(e. g., Date.now) values. Generated and mutated JS code might call
any of these functions, either directly or via a complex traversal of
prototype chains.

While direct calls to non-deterministic functions could be pre-
vented by adapting code generation, indirect calls can not. For
example, randomly generated code might traverse just the right
chain of object prototypes to reach a non-deterministic function. Af-
ter invoking any non-deterministic function, subsequent execution
behavior might differ. In a differential fuzzing setup such as ours,
this would cause a significant number of false positives. Resolving
this issue requires engine modifications that retrofit deterministic
behavior into any builtin non-deterministic function. Details of the
required engine-specific changes follow in Section 5.

4.2 Probing

During execution, we want to observe the computations and strate-
gically place a certain number of observation points. At these points,
we would like to inspect a subset of local variables and check for
any inconsistencies between the interpreter and the JIT-compiled
execution. While probing each and every computation is feasi-
ble, the resulting overhead may degrade execution throughput. As

1 function main() {
2 let result1; // declare in function scope for probing
3 let result2 = 1 + 3.0;
4 for (let idx = 0; idx < 1000; idx++) {
5 let ret = some_compute(idx);
6 result2 = ret + "aa"; // cannot declare result2 here
7 }
8 probe_state(result1); // updates execution hash
9 probe_state(result2);
10 }
11 main();
12 output_state(); // sends execution hash to fuzzer

Listing 4: We emit calls to a probing function at the end of

main. Before finishing the script execution, we output the

accumulated execution hash. This value is expected to be

independent of any applied code-optimizations during JIT-

compilation, changes suggest a miscomputation.

explained in Section 2.3, seemingly irrelevant minutiae such as com-
puting negative 0 instead of positive 0 can compromise a JS engine if
optimization passes rely on incorrect assumptions during code gen-
eration. Consequently, even the most minuscule miscomputations
are of interest to us.

A mechanism for probing the state of variables should therefore
be sensitive to subtle changes in types and values. To achieve this,
our design extends JS engines with an additional builtin function:
probe_state(value). Jit-Picker injects ➏ calls to this function
as a post-processing step running after input generation. Upon
each invocation of probe_state, the input parameter is serialized
and accumulated into a hash value. After executing a JS input, this
hash summarizes the observed computations and is hence dubbed
execution hash. The execution hash is sent to the fuzzer (➑), which
uses this value to compare multiple executions of the same input.
An example of a JavaScript snippet generated by Jit-Picker is
shown in Listing 4. In this example, variable result1 and result2
are probed at the end of main.

Transparent Probing Probing computations in the straightfor-
ward manner just introduced is already capable of identifying mis-
computations, but it suffers from a set of architectural limitations:
First, as all probing runs are at the very end of the execution, we
can potentially miss miscomputations that happen within loops. As
an example, consider the loop body in Listing 4: Assuming the loop
miscomputes result2 only for certain loop iterations, Jit-Picker
misses the miscomputed value—unless it somehow propagates out
of the loop. As a real-world example, SpiderMonkey Bug 1761947
in Table 1 uncovered by Jit-Picker only manifests in very spe-
cific loop iterations. Second, for them to be available at the end
of main(), all variables we wish to probe must be declared in the
outermost scope. However, this extended variable lifetime inhibits
some compiler optimizations. As aggressive code transformations
are the most likely culprits for miscomputations, we want to avoid
reducing their applicability by increasing the lifetime of variables.

It may appear only logical to emit calls to the probing function
not only at the end of code, but throughout the entire execution to
address both these limitations. This would allow us to place calls
within loops, uncovering miscomputations within loops, and avoid
increasing variable lifetimes. See Listing 5 for an example of such a

Jit-Picking: Differential Fuzzing of JavaScript Engines CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

1 function main() {
2 let obj = {a: 1};
3 for (let idx = 0; idx < 1000; idx++) {
4 probe_state(obj);
5 // engine must conservatively assume the native function
6 // call to probe_state updates obj. Hence obj.a cannot
7 // be identified as constant, in turn rendering
8 // constant folding optimizations inapplicable
9 let v = 1 + obj.a;
10 probe_state(v);
11 }
12 }
13 main();
14 output_state();

Listing 5: Emitting calls to a state-probing function inhibits

code optimization, as the JavaScript engine cannot reason

about which analyses remain valid during probing.

probing. We probe variable v within the loop (line 10) and hence
observe all computational results therein. However, such probing
implicitly assumes that the probe_state function is transparent
to the JIT compiler optimization passes, which it is not.

As the probing function itself is still opaque to the JS engines,
code optimization passes must fall back to conservative assump-
tions as a consequence. For example, the engines invalidate alias
analysis results whenever the probing function is called, which in
turn prevents transformations such as code motion. This hinders
the detection of miscomputations, and, therefore, is undesirable. To
overcome this limitation, and to enable us to place probing calls
throughout the execution, we propose a so-called transparent prob-
ing mechanism. This advanced mode tightly integrates probing
into the engine. Comparable to other JS builtins such as Math.log2,
the transparent probing function is no longer treated as an opaque
function call. Instead, it gets translated into the internal representa-
tion of JIT engines. This translation facilitates the declaration of the
probing’s properties, e. g., its (absent) impact on alias analysis and
how it may be reordered relative to other instructions. As this dec-
laration of properties happens before any compiler passes run, they
unlock aggressive code optimizations despite our probing. While
improving benefits w.r.t. to observing internal state, transparent
probing requires significant (but one-time) effort to implement and
is JS engine-specific. In summary, an analyst can choose between
regular probing, which effortlessly applies to all engines, or decide
to undergo the efforts to integrate transparent probing into specific
JIT engines and focus on maximizing observations.

5 IMPLEMENTATION

We implemented the proposed method in a tool called Jit-Picker.
The prototype is based on Fuzzilli, forking from commit bc057d1.
As a result, the two fuzzers share parts of the overall architecture.
However, differential fuzzing requires extensions to the execution
model, injection of a probing mechanism, as well as changes to the
targeted JS engines. In the following, we explain the implementation
challenges and our solutions in more detail. Jit-Picker and all
changes to the respective JS engines are available at https://github.
com/RUB-SysSec/JIT-Picker under an open-source license.

Instrumentation. Jit-Picker consumes coverage feedback infor-
mation generated by instrumenting the JS engine. Instrumentation
is added by compiling the target with clang’s compilation flag
-fsanitize=coverage. At runtime, the instrumentation updates
a bitmap stored in a shared memory segment which is mapped
into Jit-Picker as well as the target engine. This feedback mech-
anism allows steering input mutation towards unexplored code,
successively increasing the amount of code covered.

EngineModifications: Determinism. As explained in Section 4.1,
JS engines have to be modified to suppress non-deterministic be-
havior of language builtins. Furthermore, some JS inputs generate
out-of-memory exceptions in interpreter mode, but not under JIT
compilation (or vice versa). Even though both executionmodes have
the same amount of memory available, runtime allocation slightly
differs. As a consequence, an input might successfully execute in
interpreter mode, but throws an exception when JIT-compiling. As
such out-of-memory conditions are most likely a false positive, they
are signaled to the fuzzer, which in turn discards the input file.

We patched the JS engines SpiderMonkey and JSC such that
various builtin functions returning non-deterministic values either
return a constant or are not available during fuzzing at all. Runtime
errors such as out-of-memory are changed to print errors to stderr,
allowing the fuzzer to suppress false positives. The v8 engine al-
ready has support for suppressing non-deterministic behavior of
builtins, hence no modifications to builtin-functions are necessary
here. Due to intricacies of the floating point format, NaN can be
represented by many different bit-representations, which in turn
can result in spurious differentials. As a consequence, JS engines
require a normalization of floating point values. We implemented
this support by replacing NaN values with a canonical bit-pattern
when encountered during probing.

Engine Modifications: Transparent Probing. All of the gen-
erated JavaScript, and importantly, our probing function, should
be amenable to aggressive compiler optimizations. Hence we pro-
posed in Section 4.2 to make the properties of the probing function
known to the JS engines. As each engine differs, this requires an
engine-specific engineering effort. Even though this is a one-time
effort, we focus on implementing this technique for only a single JS
engine, SpiderMonkey, to demonstrate the practical feasibility of
this technique while reducing the engineering burden on our side.
The probing mechanism alone requires adding more than 600 LoC
into SpiderMonkey. We stress that the same concept can also be
applied to the other two engines, v8 and JSC.

A rough sketch of the transparent probing implemented for
SpiderMonkey is as follows:

• Declare the probing function as an inlinable native, similar
to builtins like Math.log2.

• Map the inlinable native to 2 new instructions introduced at
the medium-level intermediate representation (MIR) [35] of
SpiderMonkey. Declaring the MIR instructions’ properties
allows aggressive optimizations to run, as the conservative
defaults no longer apply.

• Introducing additional instructions to the low-level inter-
mediate representation (LIR) [34]. One of the instructions
specializes for typed values, whereas the other handles un-
typed values.

https://github.com/RUB-SysSec/JIT-Picker
https://github.com/RUB-SysSec/JIT-Picker

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz

Start

Generate
initial inputs

Select input 𝑖
from queue

Mutate 𝑖 to𝑚

Insert state probes

Execute𝑚 in
Interpreter

Execute𝑚
in JITDiscard𝑚

Minimize𝑚

Add minimized
to queue

Output𝑚 Set 𝑖 to𝑚

Threshold

Timeout Halts

Timeout

Difference

New Coverage else

Figure 2: Conceptual overview of the fuzzing workflow im-

plemented in Jit-Picker with a focus on passing a single

input to baseline and JIT execution.

• Implementing code generation functions for the introduced
LIR instruction, which translate the probing mechanism to
the CPU architecture machine code it is generated for.

In Section 6, we evaluate the mechanism w.r.t. the number of values
captured during execution and show its superiority to regular prob-
ing just at the end of the main() function. As we have not adapted
v8 and JSC, we use regular probing instead of transparent probing
for these two JS engines.

Fuzzing Workflow. Figure 2 shows the workflow of Jit-Picker.
We initialize the input queue by generating an initial sample con-
taining a minimal amount of JavaScript. The next step is selecting
a random sample 𝑖 from the queue. This sample is scheduled for
multiple fuzzing rounds, until we reach a predefined threshold and
select a different sample from the queue. Within each round, the
sample 𝑖 is modified via a randomly chosen mutation, deriving a
new input candidate𝑚. Next, we place our state probes into the
sample. If transparent probing is supported, we scatter the probes
throughout the entire sample, as described in Section 4.2. Otherwise,
we inject the probes at the end of the sample.

Executing 𝑚 in a JS interpreter leaves us with two potential
outcomes: (i) The execution can time out and we attempt a different
mutation, or (ii) the execution of𝑚 can halt. In case of the latter, we
extract a hash value (execution hash) derived from the state probe
inputs. Proceeding with the second execution of𝑚 in a JIT-compiler
enabled version of the JS engine leaves us with a set of four different
outcomes:

• Timeout: If𝑚 does not terminate in the JIT-compiling en-
gine, we cannot reasonably compare the derived execution
hash. Instead, we have to discard the input and test a different
mutation.

• Differential: If the execution hash derived from the JIT-
compiled input differs, we detected a differential execution.
These samples indicate a bug and are stored for manual
analysis.

• New Coverage: If new coverage is detected,𝑚 is minimized
and added to the queue. Later, the minimized sample will be
selected for further fuzzing rounds.

• Default: If none of the previous cases materializes, we set 𝑖
to𝑚 and resume mutation.

Generally speaking, this fuzzing workflow successively explores
code paths in the target JS engine, while keeping samples that
provoke a miscomputation.

6 EVALUATION

To evaluate our approach, we tested Jit-Picker on the three most
widely-used JS engines with support for JIT compilation. These
are SpiderMonkey (Firefox), v8 (Chrome/Chromium) and JSC (We-
bKit/Safari). The engines already received significant attention [19,
21, 30, 45, 47, 60] by security researchers and their respective ven-
dors, and hence can be considered well-tested, challenging targets.
While other JS engines exist [12, 15, 57], they generally do not
support JIT compilation and hence are unamenable for our current
implementation of differential fuzzing.

In our evaluation, we investigate three research questions:
RQ 1: Can Jit-Picker identify new bugs in already well-tested JS

engines?
RQ 2: Can the software faults identified by Jit-Picker also be

detected by current state-of-the-art fuzzing methods relying
on traditional bug oracles?

RQ 3: Does differential fuzzing incur a significant penalty w.r.t.
the number of inputs exercised and code coverage reached?

Identified Software Faults. For the identification of unknown
bugs, Jit-Picker ran over the course of 10 months while continu-
ously rebasing our changes to the latest versions of the JS engines.
Table 1 shows a summary of the identified bugs. In total, we found
32 previously unknown bugs. While not all of our findings were
rated as security issue (e. g., incorrect rounding optimizations or
incorrect value recovery with no security impact), each miscom-
putation flagged as JIT-Bug posed a dormant threat. As aggressive
code optimizations are continuously added, more and more mis-
computations turn into security issues. Hence it is of significant
importance to establish a sensitive bug oracle today. The majority of
identified bugs had a lifespan of more than a year and a significant
proportion of JSC bugs was even older. While JIT engine security
received a fair amount of attention recently [22, 40, 60], these con-
tributions failed to uncover the issues presented in Table 1. Due to
their lack of a differential oracle, miscomputations generally elude
their approaches. In particular, the Age column shows that many
bugs predate these works, in turn emphasizing the contribution
of Jit-Picker. We disclosed the bugs to the respective vendor in
a coordinated way and by the time of writing, the majority of the
identified bugs have already been fixed.

Jit-Picking: Differential Fuzzing of JavaScript Engines CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 1: The table shows differential execution bugs found by Jit-Picker over the course of multiple months. All identified

issues where reported to the respective vendor and we worked together with them to get the vulnerabilities fixed. The JIT-Bug
column indicates whether the bug is present in the JIT component of the engine, as judged by analyzing the patches. The Age
column indicates the minimum number of months between introduction of the miscomputation and the commit fixing the

issue. Introduction of the root cause might be even earlier. The Changes column indicates the number of lines changes by the

fix, not counting any supplemental changes such as test cases.

Engine Bug ID JIT-Bug Age [months] Status Changes Description

v8 v8 12215 ✓ > 6 collision1 Negative array indices may return incorrect values
JSC WebKit 229869 ✓ >30 fixed +37/-13 Incorrect casting between int52 and int32 values
JSC WebKit 230802 ✓ >30 fixed +6/-2 Strength reduction analyzes RegEx.exec incorrectly
JSC WebKit 230804 ✓ 19 fixed +6/-4 Engine did not properly handle callable Proxy’s
JSC WebKit 229939 ✓ >30 fixed +13/-4 in statements incorrect covert non-objects
JSC WebKit 230823 ✓ >30 fixed +19/-9 Incorrect backwards propagation during OSR
JSC WebKit 229951 ✓ >30 fixed +66/-7 Incorrect this used for getter access
JSC WebKit 231321 ✓ 2 fixed +43/-21 Missing property recovery
JSC WebKit 231322 ✘ 10 fixed +2/-3 Incorrect handing of ArrayBuffer watchpoints
JSC WebKit 232679 ✓ >30 fixed +3/-3 Incorrect conversion from Date to Number
JSC WebKit 232753 ✓ >30 fixed +10/-2 Constant folding to wrong type
JSC WebKit 232754 ✓ 7 fixed +57/-15 Incorrect conversion from Symbol to String
JSC WebKit 232966 ✓ >20 fixed +8/-5 Spread incorrectly handles negative indices
JSC WebKit 233408 ✓ 18 fixed +30/-14 Incorrect property check for in-bounds computation
JSC WebKit 233682 >16 reported
SM 1716231 ✓ 1 fixed +9/-8 Incorrect rounding optimization on float32 values
SM 1716931 ✓ 2 fixed +38/-5 Incorrect interaction between yield* and OSR
SM CVE-2021-29982 ✓ 14 fixed +16/-11 Register clobbering leaks information to JavaScript
SM 1720093 ✓ 13 fixed +7/-0 Incorrect value recovery during OSR
SM 1720032 ✓ 16 fixed +21/-9 Exception tracking causes DCE of live code
SM 1738676 ✓ 13 fixed +1/-1 Incorrect dropping of negative zero sign
SM 1745949 ✓ >24 fixed +76/-71 Range analysis and truncation interact incorrectly
SM 1749460 ✘ 1 fixed +2/-2 Baseline insufficiently checks argument spreading
SM 1750496 ✓ 8 fixed +0/-1 Incorrect instruction folding
SM 1751660 ✓ >24 fixed +8/-0 Incorrect recovery of Function.arguments
SM 1757634 ✓ >18 fixed +78/-87 Mishandling of frozen prototypes
SM 1759029 ✓ 11 fixed +5/-2 Incorrect value recovery in catch blocks
SM 1761947 ✓ 4 fixed +26/-32 Incorrect value recovery from scalar-replaced objects
SM 1762343 ✓ 11 fixed +80/-75 Incorrect optimization on float32
SM 1763012 ✓ >22 fixed +7/-0 Incorrect range analysis results in DCE of live code
SM 1767196 ✓ > 6 fixed +7/-2 Incorrect phi specialization
SM 1785200 ✘ > 8 fixed +116/-5 Sparse elements are accessed erroneously
1 Public discovery of a bug hidden by the vendor

Answer to RQ 1: Jit-Picker uncovers bugs not publicly known
in all tested JS engines, despite the fact that browser vendors
and security researchers already invest significant resources in
testing their implementations.

False Positives A JS input yielding different results during mul-
tiple executions might be caused by a miscomputation. However,
there are cases where differing results are entirely benign. As an
example, Math.random returns a different value for each invocation.
Such benign differences do not constitute a bug and are consid-
ered a false-positive w.r.t. Jit-Picker. Our efforts to reduce such
benign differences are described in Section 5. During our fuzzing
campaigns spanning 10 months, we reported all findings directly

to the respective vendor. These campaigns were deployed on 1-4
servers, depending on the available resources. None of the bug
reports were deemed invalid or irreproducible. We hence conclude
that the false-positive rate of Jit-Picker is negligible.

Case Study: Firefox Infoleak CVE-2021-29982. During our
evaluation, we identified a differential execution in Firefox. The
code generation function isCallableOrConstructor() takes two
parameters obj and output, each encoding a register. Due to a
logical flaw in the register allocation, obj and outputwere assigned
to the same register. The situation is comparable to a C/C++ function
taking two pointer parameters, while expecting them to be non-
overlapping. This leads to multiple operations of a generated code
sequence unexpectedly operating on an identical register.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz

1 function main() {
2 let result;
3
4 async function f() {
5 const val = false;
6 const neg = -val; // neg is negative 0
7 result = neg;
8 for (let idx = 0; idx != 100000; idx++) {
9 // trigger JIT
10 }
11 }
12
13 [1,1,1].filter(f);
14 // result is -0 in interpreter mode and 0 in JIT mode.
15 // probe_state is sensitive to the difference, in turn
16 // allowing identification of the miscomputation.
17 probe_state(result);
18 }
19 main();

Listing 6: JavaScript snippet identified by Jit-Picker (mini-

mized and simplified) triggering a miscomputation in JSC.

In this particular case, an internal pointer value got partially
exposed to JavaScript. As a consequence, the result of a JS op-
eration returned different results depending on internal pointer
values. Note that bugs like this which leak (initialized) values to
JavaScript do not trigger segmentation faults or sanitizer violations.
Hence, they remain invisible to existing bug oracles. In contrast,
information leaks are highly valuable to adversaries, as they allow
bypassing security mitigations based on information hiding (e. g.,
ASLR and stack canaries [41, 59]).

Case Study: WebKit Bug 230823. During fuzzing of WebKit,
Jit-Picker identified a miscomputation in JSC. A minimized and
simplified version of this miscomputation is shown in Listing 6.

The miscomputation’s root cause is a logical flaw in the inter-
action between graph pruning and a backpropagation algorithm.
Our state probing function in line 17 detects the change in result,
while a simple call to print would be unable to detect any change.
We modified such findings before submission to the relevant bug
tracker of each tested JS engine, e. g., by replacing the call to
probe_state(result) with print(Object.is(-0.0, result)).
This information allowed the developers to reproduce our finding
and the underlying issues were promptly fixed.

Case Study: WebKit Bug 230802. One of the differential execu-
tions identified by Jit-Picker is caused by incorrect behavior of
RegEx.exec() in WebKit. During JIT compilation, RegEx.exec()
erroneously returned a value of type Number. However, only Null
and Object are valid return types for this function call. The root
cause for this bug was a logical flaw during a strength reduction
optimization [1]. Because WebKit optimizations currently do not
take the expected return type of RegEx.exec() into account, the
bug was rated as a non-security issue.

Optimization passes of other JS engines, e. g., v8’s typer phase,
already exploit the type information of builtin functions. In partic-
ular, past vulnerabilities in v8 [46] did in fact exploit mismatches
between typer phase optimizations and actual runtime types. In
essence, any non-security miscomputation today is “just a compiler

optimization away” from becoming a remote-code execution vul-
nerability in the future and thus these bugs need to be considered
carefully.

Answer to RQ 2: As shown in our case studies, differential
execution bugs generally do not manifest as segmentation fault
or sanitizer violation. Hence, existing bug oracles are blind to
these bugs, despite input generation being able to produce faulty
samples.

Experimental Setup for Comparative Experiments. For the
subsequent comparative evaluation, we tested Jit-Picker on the
three most-widely used JS engines, for which we used the latest
available versions at the time of the experiments:

• For v8, we based our changes on version 9.6.99 which cor-
responds to Git commit 29abb5d847.

• For SpiderMonkey, our changes are applied to Git commit
3fa5cc437a49.

• For WebKit, we modified Git commit 29c8d02c3b11 with
our changes.

The tests were distributed on three identical machines, each with
two Intel Xeon Gold 5320 CPUs clocked at 2.20GHz, 256GB RAM,
and Ubuntu 21.04 as operating system. Each test ran for three days
and was repeated five times. A dedicated leader instance synchro-
nized the individual fuzzing queues of the 100 workers per test
via a virtualized network. Coverage was measured by re-running
the Jit-Picker queues on a separate JS engine build compiled to
generated Clang code coverage feedback [56]. Note that for code
coverage measurements we disabled the randomization of JIT op-
tions and tiers described in Section 4.1 as this would result in an
unfair advantage of Jit-Picker over Fuzzilli. The SpiderMonkey
implementation had transparent probing enabled, while v8 and JSC
utilized baseline probing.

Inputs Exercised. To answer the first aspect of RQ 3, the impact of
differential testing on fuzzing throughput, we measure the number
in tested samples over a fuzzing session of three days. Intuitively,
the number of samples tested should be reduced by more than 50%.
This slowdown is presumed as samples are not only processed by
the faster JIT compiler, but in addition by the slower JS interpreter.

Figure 3 compares the number of samples exercised by Jit-
Picker to a baseline run of Fuzzilli over the course of three days
testing SpiderMonkey. Taking the throughput measurements on
SpiderMonkey as an example, Jit-Picker tests 235 million sam-
ples within three days (𝑆𝑎𝑚𝑝𝑙𝑒𝑠Jit-Picker). Of these samples, 190
million are executed a second time in order to detect differential
executions (𝐷𝑖 𝑓 𝑓𝑇𝑒𝑠𝑡𝑠Jit-Picker). The difference between the num-
ber arises due to samples not terminating, i. e., producing a timeout.
Remember, as shown in Figure 2, samples triggering a timeout in
the interpreter execution are not scheduled for differential testing.
Comparing these numbers to our baseline Fuzzilli, which tests 271
million samples, we notice a decrease in throughput of 13%. This
decrease is significantly less severe than intuitively expected, but
still indicates that differential fuzzing leads to a certain overhead.

Code Coverage. Answering the second aspect of RQ 3, the im-
pact of differential fuzzing on code coverage, is again evaluated on
a fuzzing run of three days. While we could have included code

Jit-Picking: Differential Fuzzing of JavaScript Engines CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

[hours]
0 12 24 36 48 60 72

In
pu

ts
Te
st
ed

𝑆𝑎𝑚𝑝𝑙𝑒𝑠Fuzzilli

∗106

0

50

100

150

200

250

𝑆𝑎𝑚𝑝𝑙𝑒𝑠Jit-Picker
𝐷𝑖𝑓 𝑓 𝑇𝑒𝑠𝑡𝑠Jit-Picker

Figure 3: Number of inputs tested and corresponding 60%

confidence intervals. Testing an input file two times in a dif-

ferential fuzzing setup does not degrade the number of inputs

tested by 50%. Instead, we observe a decrease in throughput

by 13%.

[hours]

Br
an
ch
es

Co
ve
re
d

0 12 24 36 48 60 72

60000

70000

90000

80000

V8 Jit-Picker
V8 Fuzzilli
SpiderMonkey Jit-Picker
SpiderMonkey Fuzzilli
JSC Jit-Picker
JSC Fuzzilli

Figure 4: Branch coverage and 60% confidence intervals of

Jit-Picker and Fuzzilli while fuzzing three JS engines over

3 days. For all engines, additional differential executions has

little effect on the progress of achieving high code coverage.

coverage measurements of various other JS fuzzers, the focus of
our work is not on improving input generation and increasing said
coverage. Instead, our stronger oracle should be shown to increase
bug detection capabilities with the same amount of code coverage.
Indeed, as we can see in Figure 4, there is no significant change
for SpiderMonkey and WebKit compared to our baseline after com-
pleting the measurement. Only a small noticeable delta in code
coverage shows on v8. We explain the difference with decreased
fuzzing throughput of Jit-Picker, as shown in Figure 3.

Answer to RQ 3: While the number of inputs tested by Jit-
Picker decreases compared to our baseline, the same code cov-
erage is reached over the course of a fuzzing session.

101 102 103 104 105 106 107100

Scatter

End

Figure 5: Boxen-plot showing the impact of the state probing

function’s placement on the number of runtime observations.

Scattering the function throughout the program strongly

increases the number of observations.

Number of State Probes. In Section 4.2, we introduced the idea of
placing state probes not only at the end of the generated JS inputs,
but instead scattering them throughout the entire input (transparent
probing). This was motivated by the fact that variables holding a
miscomputed value might no longer be available at the end of
the computation. In particular, variables stored within loops are
continuously redefined, leaving only the last redefinition available
at the end of the execution. Hence, any miscomputation happening
only during certain loop iterations would likely remain invisible.

In this part of the evaluation, we compare the number of obser-
vations our execution hash depends on, i. e., the number of calls to
probe_state. Our baseline is placing the state probes at the end of
the execution only. In comparison, we scatter the same number of
probes throughout the entire input sample. The boxen plot in Fig-
ure 5 shows a visualization of our measurement results. The interval
bound by the highest boxes accounts for 50% of all executions, with
the dashed line indicating the median. The second-largest boxes
each account for 12.5% of all executions, the third-largest boxes for
6.25%, successively cutting in halve the remaining measurements.
When placing our probes at the end only, we rarely encounter exe-
cutions with more than 20 individual observations. This stands in
stark contrast to placing our probing throughout the entire sample.
In > 12.5% of executions we observe at least 102 values and in 3% of
executions at least 103. This is congruent with our hypothesis that
random placement will emit the probing functions within loops, in
turn increasing the likelihood of detecting a miscomputation only
occurring during a subset of loop iterations.

7 DISCUSSION

In the following, we discuss shortcomings and potential future
work in the context of Jit-Picker.

Other Targets. While we focused on JS engines of web browsers in
this work, differential fuzzing is per se applicable to any language or
program featuring both an interpreter as well as a JIT engine. In the
context of web browsers, an example of this is regular expression
engines, which rely on JIT compilation [11] to speed up matching.
Furthermore, compiling untrusted WebAssembly [44] modules to
native code poses an opportunity to deploy differential fuzzing.

Besides browsers, untrusted PHP code running in a sandbox en-
vironment [54] of a hosting provider or the Extended Berkeley Packet

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz

Filter (eBPF) in the Linux kernel are amenable to differential fuzzing.
Widening the scope to non-security applications, the correctness of
JIT compilers for Python, Ruby, and other programming languages
can be tested. Depending on the target, this may require adaptation
of the probes and their injection into the fuzzing inputs. In this
work, we focus on JS engines due to their practical importance,
high value to attackers, and exposure to malicious code.

Integration into Other Fuzzers. Our approach is designed in
a generic and fuzzer-agnostic way. As such, it can be built on top
of any fuzzer that allows adapting the fuzzer’s input generation
process to insert the state probing function. For our prototype im-
plementation of Jit-Picker, we have chosen Fuzzilli, the industrial
state of the art, as base due to its high efficiency and excellent track
record w.r.t. finding bugs.

Bug Triaging and Impact. Fuzzers are notorious for generating
a high number of inputs even for a small number of underlying
bugs, requiring additional tools to reliably identify the true number
of bugs and their root cause [5, 27]. As Jit-Picker produces inputs
that do not necessarily cause a crash, existing tools cannot be used
to minimize the findings or triage the root cause of identified bugs.
We have manually triaged the root cause for the bugs that Jit-
Picker uncovered. More principled analysis methods are needed
to improve the assessment of identified bugs.

Future Work. While differential fuzzing already proved its use-
fulness, we see multiple optimization opportunities for testing JIT
compilers. First, the transparent probing mechanism could be im-
plemented for the remaining two JS engines, but this is merely an
engineering challenge. Second, the probing mechanism could be
extended to incorporate more engine-specific details (such as recon-
structed type information for object fields). This would increase the
sensitivity to miscomputations even further, in turn strengthening
Jit-Picker’s bug detection abilities. Finally, we see opportunities to
automate the process of deduplicating the produced bugs, reducing
the manual effort required to triage the reported findings.

8 RELATEDWORK

As an established tool for excavating bugs in software, fuzz testing
has received increased attention from security researchers over the
years. AFL [65] introduced the concept of feedback-driven fuzzing,
which gradually builds andmutates a corpus of interesting inputs by
observing code coveragewithin the program under test. By perform-
ing bit-oriented and byte-oriented mutations on an input, flexible
inputs are generated, and a wide range of programs were tested
with great bug finding results. Researchers subsequently followed
suit by proposing generic improvements of several core aspects of
fuzzing, such as selecting mutations [33], selecting inputs to mu-
tate [6, 64], and decreasing the overall overhead of fuzzing [36, 62].
Such generic progress extended to programs which expect highly
structured inputs, for which researchers proposed approaches based
on structure-awareness and grammar awareness [2, 4, 9, 23, 58, 60].

As browser security became increasingly relevant to protect the
privacy of users, researchers tailored fuzzing systems more and
more towards JS engines. These approaches focused on generating
increasingly diverse and high-quality JS test cases to thoroughly
exercise JS interpreters and JIT compilers [19, 21, 30, 40, 45, 47].

In addition to optimizing the input generation mechanisms that
drive the fuzzing process, bug oracles play an important role in
identifying bugs in the system under test. During fuzzing, sanitiz-
ers may be used to detect faulty conditions even in the absence
of crashes, such as accesses to uninitialized or previously freed
memory. Sanitizers have received some academic attention in the
form of optimizing their performance [26], making them available
for closed-source targets [13], or using their injected checks as pri-
oritized targets during fuzzing [37]. However, the corpus of work
dedicated to input generation mechanisms far outweighs similar
works on bug oracles. To this day, state-of-the-art JS engine fuzzers
still largely rely on traditional crash signals and generic sanitiz-
ers [50, 53] to detect buggy behavior.

One notable line of work that aims to detect bugs without re-
quiring crashes is differential testing, where the output of different,
but related target components is compared. Previously, differential
testing was used to uncover bugs in CPUs [24], x509 certificate val-
idation [7, 42], C compilers [29, 63] and the JVM [10]. With regards
to browser testing, intuitively, one might want to locate browser
implementation bugs by comparing a specific execution’s result to
the result produced by competing browsers. However, the leeway
introduced by implementation-specific behavior in the JS standard
ECMAScript [61] makes it impossible to compare the outputs, and
fully normalizing JS output across JS engines is infeasible: Global
structures are laid out differently between JS engines, and functions
like sorting algorithms are allowed to produce inconsistencies in the
face of unexpected inputs. To circumvent this pitfall for the purpose
of testing specification compliance of JS engines, Park et al. [38, 40]
rely on the language specification to derive test cases for which the
outcome is well-defined and known a-priori, leading to comparable
outputs. In contrast, a fuzzer will (and should) explore all JS fea-
tures, including those that are defined as implementation-specific in
ECMAScript. These implementation-specific details lead to benign
differences between observed output behavior of JS engines, which
makes it challenging to judge whether a difference is benign or
introduced by faulty behavior. This results in a high number of false
positives, rendering the approach of comparing the output behav-
ior of different JS engines unattractive for fuzzing JIT optimization
passes. In contrast, we propose to evaluate a JS engine against itself
and demonstrate that this approach is feasible in practice.

9 CONCLUSION

In this work, we presented the design and implementation of Jit-
Picker, a newmethod for efficiently testing JavaScript JIT compilers
by combining differential testing with fuzzing. We leveraged the
strict consistency requirement demanding that both interpreted and
JIT-compiled code perform computations in a substitutable manner.
This criteria allowed sidestepping the issue of implementation-
dependent behavior, previously preventing differential testing on
all but well-defined inputs. Instead, we unlocked differential testing
on fuzzer-generated JavaScript code by testing individual engines
against themselves. In our evaluation, Jit-Picker identified 32 bugs
not publicly known in the three most-widely used browser JS en-
gines. Since all the engines studied were thoroughly tested before,
we believe that these findings demonstrate the applicability and
potency of our technique.

Jit-Picking: Differential Fuzzing of JavaScript Engines CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

ACKNOWLEDGMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972.

REFERENCES

[1] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers:
Principles, Techniques, and Tools. Pearson Education, Inc, 2003.

[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. Nautilus: Fishing for Deep Bugs with
Grammars. In Symposium on Network and Distributed System Security (NDSS),
2019.

[3] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. Redqueen: Fuzzing with Input-to-State Correspondence. In
Symposium on Network and Distributed System Security (NDSS), 2019.

[4] Tim Blazytko, Cornelius Aschermann, Moritz Schloegel, Ali Abbasi, Sergej Schu-
milo, Simon Wörner, and Thorsten Holz. Grimoire: Synthesizing Structure while
Fuzzing. In USENIX Security Symposium, 2019.

[5] Tim Blazytko, Moritz Schloegel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
Simon Wörner, and Thorsten Holz. Aurora: Statistical Crash Analysis for Auto-
mated Root Cause Explanation. In USENIX Security Symposium, 2020.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-Based
Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engineering,
45(5):489–506, 2019.

[7] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. Using Frankencerts for Automated Adversarial Testing of Certificate
Validation in SSL/TLS Implementations. In IEEE Symposium on Security and
Privacy (S&P), 2014.

[8] Mathias Bynens. Temporarily Disabling Escape Analysis. https://v8.dev/blog/
disabling-escape-analysis, 2007.

[9] Y. Chen, R. Zhong, H. Hu, H. Zhang, Y. Yang, D. Wu, and W. Lee. One Engine to
Fuzz ’em All: Generic Language Processor Testing with Semantic Validation. In
IEEE Symposium on Security and Privacy (S&P), 2021.

[10] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. Coverage-
directed Differential Testing of JVM Implementations. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), 2016.

[11] Erik Corry, Christian Plesner Hansen, and Lasse Reichstein Holst Nielsen. Irreg-
exp, Google Chrome’s New Regexp Implementation. https://blog.chromium.org/
2009/02/irregexp-google-chromes-new-regexp.html, 2009.

[12] Facebook. Hermes. https://hermesengine.dev.
[13] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. Fuzzing Binaries

for Memory Safety Errors with QASan. In IEEE Secure Development (SecDev),
2020.

[14] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++: Com-
bining Incremental Steps of Fuzzing Research. In USENIX Workshop on Offensive
Technologies (WOOT), 2020.

[15] Evgeny Gavrin, Sung-Jae Lee, Ruben Ayrapetyan, and Andrey Shitov. Ultra Light-
weight JavaScript Engine for Internet of Things. In ACM SIGPLAN International
Conference on Systems, Programming, Languages and Applications: Software for
Humanity, 2015.

[16] Robert Gawlik and Thorsten Holz. Sok: Make JIT-spray Great Again. In USENIX
Workshop on Offensive Technologies (WOOT), 2018.

[17] Google. Sparkplug - a Non-optimizing JavaScript Compiler. https://v8.dev/blog/
sparkplug.

[18] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm
Testing. In International Symposium on Software Testing and Analysis (ISSTA),
2012.

[19] Samuel Groß. Fuzzilli: (Guided)-Fuzzing for JavaScript Engines. Offensive Con,
2019.

[20] Samuel Groß. JITSploitation I: A JIT Bug. https://googleprojectzero.blogspot.
com/2020/09/jitsploitation-one.html, 2020.

[21] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. CodeAlchemist: Semantics-
Aware Code Generation to Find Vulnerabilities in JavaScript Engines. In Sympo-
sium on Network and Distributed System Security (NDSS), 2019.

[22] Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou, Yang Liu,
Lei Yu, Jianhua Zhou, Wenchang Shi, et al. SoFi: Reflection-Augmented Fuzzing
for JavaScript Engines. In ACM Conference on Computer and Communications
Security (CCS), 2021.

[23] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with Code Fragments.
In USENIX Security Symposium, 2012.

[24] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and By-
oungyoung Lee. DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs. In IEEE
Symposium on Security and Privacy (S&P), 2021.

[25] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis for
JavaScript. In International Static Analysis Symposium (SAS), 2009.

[26] Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer. FuZZan:
Efficient Sanitizer Metadata Design for Fuzzing. In USENIX Annual Technical
Conference (ATC), 2020.

[27] Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh, Chaojing Tang, Chao Zhang, and
Mathias Payer. Igor: Crash Deduplication Through Root-Cause Clustering. In
ACM Conference on Computer and Communications Security (CCS), 2021.

[28] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maga-
nis, and Tadayoshi Kohno. Privacy Oracle: A System for Finding Application
Leaks with Black Box Differential Testing. In ACM Conference on Computer and
Communications Security (CCS), 2008.

[29] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler Validation via Equivalence
Modulo Inputs. ACM Sigplan Notices, 49(6):216–226, 2014.

[30] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. Montage: A Neural
Network Language Model-guided JavaScript Engine Fuzzer. In USENIX Security
Symposium, 2020.

[31] Zhenhuan Li and Shenrong Liu. Using the JIT Vulnerability to Pwning Microsoft
Edge. Black Hat Asia, 2019.

[32] Igor Lima, Jefferson Silva, Breno Miranda, Gustavo Pinto, and Marcelo d’Amorim.
Exposing Bugs in JavaScript Engines through Test Transplantation and Differen-
tial Testing. Software Quality Journal, 29:129–158, 2021.

[33] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. MOPT: Optimized Mutation Scheduling for Fuzzers. In USENIX
Security Symposium, 2019.

[34] Mozilla. IonMonkey/LIR. https://wiki.mozilla.org/IonMonkey/LIR.
[35] Mozilla. IonMonkey/MIR. https://wiki.mozilla.org/IonMonkey/MIR.
[36] Stefan Nagy and Matthew Hicks. Full-Speed Fuzzing: Reducing Fuzzing Over-

head through Coverage-Guided Tracing. In IEEE Symposium on Security and
Privacy (S&P), 2019.

[37] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Parme-
San: Sanitizer-guided Greybox Fuzzing. In USENIX Security Symposium, 2020.

[38] Jihyeok Park, Seungmin An, Dongjun Youn, Gyeongwon Kim, and Sukyoung
Ryu. JEST: N+1-Version Differential Testing of Both JavaScript Engines and
Specification. In International Conference on Software Engineering (ICSE), 2021.

[39] Jihyeok Park, Jihee Park, Seungmin An, and Sukyoung Ryu. JISET: JavaScript
IR-Based Semantics Extraction Toolchain. In ACM/IEEE International Conference
on Automated Software Engineering (ASE), 2020.

[40] Soyeon Park,Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. Fuzzing JavaScript
Engines with Aspect-preserving Mutation. In IEEE Symposium on Security and
Privacy (S&P), 2020.

[41] PaX Team. Address space layout randomization (ASLR). https://pax.grsecurity.
net/docs/aslr.txt, 2003.

[42] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and
Suman Jana. Nezha: Efficient Domain-independent Differential Testing. In IEEE
Symposium on Security and Privacy (S&P), 2017.

[43] Chris Rohlf and Yan Ivnitskiy. Attacking Clientside JIT Compilers. Black Hat
USA, 2011.

[44] Andreas Rossberg, Ben L Titzer, Andreas Haas, Derek L Schuff, Dan Gohman,
Luke Wagner, Alon Zakai, JF Bastien, and Michael Holman. Bringing the Web Up
to Speed with WebAssembly. Communications of the ACM (CACM), 61:107–115,
2018.

[45] Jesse Ruderman. Introducing jsfunfuzz. https://www.squarefree.com/2007/08/02/
introducing-jsfunfuzz/ , 2007.

[46] Stephen Röttger. Incorrect type information on Math.expm1. https://bugs.
chromium.org/p/chromium/issues/detail?id=880207.

[47] Christopher Salls, Chani Jindal, Jake Corina, Christopher Kruegel, and Giovanni
Vigna. Token-Level Fuzzing. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec), 2021.

[48] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine Types.
In USENIX Security Symposium, 2021.

[49] Marija Selakovic and Michael Pradel. Performance Issues and Optimizations in
JavaScript: An Empirical Study. In International Conference on Software Engineer-
ing (ICSE), 2016.

[50] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In USENIX Annual
Technical Conference (ATC), 2012.

[51] Manuel Serrano and Marc Feeley. Property Caches Revisited. In International
Conference on Compiler Construction, 2019.

[52] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. SoK: Sanitizing for Security. In IEEE Symposium
on Security and Privacy (S&P), 2019.

[53] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer: Fast Detector
of Uninitialized Memory Use in C++. In IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2015.

[54] Dmitry Stogov and Zeev Suraski. PHP RFC: JIT. https://wiki.php.net/rfc/jit, 2019.
[55] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in

Memory. In IEEE Symposium on Security and Privacy (S&P), 2013.

https://v8.dev/blog/disabling-escape-analysis
https://v8.dev/blog/disabling-escape-analysis
https://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html
https://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html
https://hermesengine.dev
https://v8.dev/blog/sparkplug
https://v8.dev/blog/sparkplug
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://wiki.mozilla.org/IonMonkey/LIR
https://wiki.mozilla.org/IonMonkey/MIR
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://bugs.chromium.org/p/chromium/issues/detail?id=880207
https://bugs.chromium.org/p/chromium/issues/detail?id=880207
https://wiki.php.net/rfc/jit

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz

[56] The Clang Team. Source-based Code Coverage. https://clang.llvm.org/docs/
SourceBasedCodeCoverage.html.

[57] Sami Vaarala. Duktape. https://github.com/svaarala/duktape.
[58] Vasudev Vikram, Rohan Padhye, and Koushik Sen. Growing A Test Corpus with

Bonsai Fuzzing. In International Conference on Software Engineering (ICSE), 2021.
[59] Perry Wagle, Crispin Cowan, et al. Stackguard: Simple Stack Smash Protection

for GCC. In Proceedings of the GCC Developers Summit, 2003.
[60] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-Aware

Greybox Fuzzing. In International Conference on Software Engineering (ICSE),
2019.

[61] Allen Wirfs-Brock. ECMAScript 2021 Language Specification. Ecma International,
12 edition, 2021.

[62] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Designing New
Operating Primitives to Improve Fuzzing Performance. In ACM Conference on
Computer and Communications Security (CCS), 2017.

[63] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and Understanding
Bugs in C Compilers. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2011.

[64] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou. Eco-
Fuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the Adversarial
Multi-Armed Bandit. In USENIX Security Symposium, 2020.

[65] Michal Zalewski. american fuzzy lop. https://lcamtuf.coredump.cx/afl/.
[66] Zerodium. ZERODIUM: Payouts for Mobiles. https://zerodium.com/program.

html, 2021.

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://github.com/svaarala/duktape
https://lcamtuf.coredump.cx/afl/
https://zerodium.com/program.html
https://zerodium.com/program.html

	Abstract
	1 Introduction
	2 Challenges Securing JavaScript JIT
	2.1 JavaScript JIT Compilation
	2.2 Fuzzing JavaScript Engines
	2.3 From Buggy Snippets to Crashing Inputs

	3 Detecting Subtle Bugs in JS Engines
	4 Design
	4.1 Key Components
	4.2 Probing

	5 Implementation
	6 Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

