
REDQUEEN: Fuzzing with
Input-to-State Correspondence

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik and Thorsten Holz
Ruhr-Universität Bochum

Abstract—Automated software testing based on fuzzing has
experienced a revival in recent years. Especially feedback-driven
fuzzing has become well-known for its ability to efficiently
perform randomized testing with limited input corpora. Despite
a lot of progress, two common problems are magic numbers
and (nested) checksums. Computationally expensive methods such
as taint tracking and symbolic execution are typically used to
overcome such roadblocks. Unfortunately, such methods often
require access to source code, a rather precise description of the
environment (e.g., behavior of library calls or the underlying OS),
or the exact semantics of the platform’s instruction set.

In this paper, we introduce a lightweight, yet very effective
alternative to taint tracking and symbolic execution to facilitate
and optimize state-of-the-art feedback fuzzing that easily scales
to large binary applications and unknown environments. We
observe that during the execution of a given program, parts
of the input often end up directly (i.e., nearly unmodified)
in the program state. This input-to-state correspondence can
be exploited to create a robust method to overcome common
fuzzing roadblocks in a highly effective and efficient manner.
Our prototype implementation, called REDQUEEN, is able to
solve magic bytes and (nested) checksum tests automatically
for a given binary executable. Additionally, we show that our
techniques outperform various state-of-the-art tools on a wide
variety of targets across different privilege levels (kernel-space
and userland) with no platform-specific code. REDQUEEN is the
first method to find more than 100% of the bugs planted in
LAVA-M across all targets. Furthermore, we were able to discover
65 new bugs and obtained 16 CVEs in multiple programs and
OS kernel drivers. Finally, our evaluation demonstrates that
REDQUEEN is fast, widely applicable and outperforms concurrent
approaches by up to three orders of magnitude.

I. INTRODUCTION

Fuzzing has become a critical component in testing the
quality of software systems. In the past few years, smarter
fuzzing tools have gained significant traction in academic
research as well as in industry. Most notably, american fuzzy
lop (AFL [44]) has had a significant impact on the security
landscape. Due to its ease of use, it is now convenient
to more thoroughly test software, which many researchers
and developers did. On the academic side, DARPA’s Cyber
Grand Challenge (CGC) convincingly demonstrated that fuzzing
remains highly relevant for the state-of-the-art in bug finding:
all teams used this technique to uncover new vulnerabilities.

Following CGC, many new fuzzing methods were presented
which introduce novel ideas to find vulnerabilities in an
efficient and scalable way (e.g., [10], [16], [19], [31], [34]–
[38]).

To ensure the adoption of fuzzing methods in practice,
fuzzing should work with a minimum of prior knowledge.
Unfortunately, this clashes with two assumptions commonly
made for efficiency: (i) the need to start with a good corpus of
seed inputs or (ii) to have a generator for the input format. In
absence of either element, fuzzers need the ability to learn
what interesting inputs look like. Feedback-driven fuzzing,
a concept popularized by AFL, is able to do so: Interesting
inputs which trigger new behavior are saved to produce more
testcases, everything else is discarded.

A. Common Fuzzing Roadblocks

To motivate our approach, we first revisit the problem of
efficiently uncovering new code, with a focus on overcoming
common fuzzing roadblocks. In practice, two common prob-
lems in fuzzing are magic numbers and checksum tests. An
example for such code can be seen in Listing 1. The first bug
can only be found if the first 8 bytes of the input are a specific
magic header. To reach the second bug, the input has to contain
the string “RQ” and two correct checksums. The probability of
randomly creating an input that satisfies these conditions is
negligible. Therefore, feedback-driven fuzzers do not produce
new coverage and the fuzzing process stalls.

/* magic number example */
if(u64(input)== u64(" MAGICHDR "))

bug (1);

/* nested checksum example */
if(u64(input)== sum(input +8, len -8))

if(u64(input +8) == sum(input +16 , len -16))
if(input [16]== ’R’ && input [17]== ’Q’)

bug (2);

Listing 1: Roadblocks for feedback-driven fuzzing.

In the past, much attention was paid to address such road-
blocks. Different approaches were proposed which typically
make use of advanced program analysis techniques, such as
taint tracking and symbolic execution [12], [13], [16], [22],
[23], [26], [35], [38], [40]. Notably, both ANGORA [16] and
T-FUZZ [34] fall into this category. These approaches usually
require a rather precise description of the environment (e.g.,
behavior of library calls or the underlying OS) and the exact
semantics of the platform’s instruction set. As a result, it is
hard to use this methods on targets that use complex instruction
set extensions (i. e., floating point instructions) or uncommon

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23xxx
www.ndss-symposium.org

libraries and operating systems. Therefore, such approaches
are the polar opposite of the approach pioneered by AFL: to a
large extend, AFL’s success is based on the fact that it makes
few assumptions about the program’s behavior. Based on this
insight, we investigate a novel fuzzing method that excels at
increasing code coverage on arbitrary targets, ranging from
open-source userland programs to closed-source OS kernels.
We demonstrate that this approach can outperform existing
fuzzing strategies.

B. Our Approach: Input-to-State Correspondence

In this paper, we propose a novel and lightweight method
that—in many cases— is able to replace the two complex
analysis primitives taint tracking and symbolic execution. In
contrast to the two aforementioned techniques, our method is
easy to implement and scales to large, complex targets and
diverse environments. Our approach is based on a simple yet
intuitive observation: in many cases, parts of the input directly
correspond to the memory or registers at run time. Hence,
there is a strong input-to-state correspondence between the
input and the current program state. This can be exploited
to implement an efficient fuzzing approach. In practice, most
programs apply only a small number of decoding steps to the
input, before the inputs data is used. We found that the set
of encoding schemes used by real-world programs is typically
rather small: normally, these values are directly used in the
context of hard condition such as checks for a specific header
value (magic bytes). For example, it is common that input
bytes are interpreted as little-endian integers and then directly
compared against a checksums or specific magic bytes.

We exploit this observation by tracing the program to
observe values used in compare instructions. By “colorizing”
the input with random bytes, we create a very lightweight
approximation to taint tracking. Then, we speculate that we
are able to control these values by changing the corresponding
input bytes. Finally, we use the fast fuzzing process to verify
whether we triggered new and potential interesting behav-
ior. Similarly, we swiftly discard false positives which arise
from this over-approximation. This method allows us to skip
complex sections of the code such as API calls or unknown
instructions, which would otherwise be difficult to handle
for taint tracking or symbolic execution. As a result, even
inputs which pass through unknown library functions, large
data-dependent loops, and floating point instructions do not
significantly reduce the quality of the results. We continue to
use the same principle to implement a patching-based solution
to handle checksum tests. In contrast to similar approaches,
our approach entirely avoids symbolic execution, while always
maintaining a queue of inputs with valid checksums and no
false positives.

Feedback-driven fuzzers typically use the same instru-
mentation across all executions to measure code coverage
and other feedback information. For example, VUZZER uses
its full taint tracking capabilities on each input generated.
Since most fuzzing executions (millions to billions) happen
on top of the same few inputs (thousands to hundreds of
thousands), we propose to incorporate analysis into feedback-
driven fuzzing differently: we separate the more expensive
analysis process from the fuzzing process. In our case, we
perform the expensive search for path-specific input-to-state

correspondences only once per new input found. All actual
fuzzing is then performed without this additional overhead.
We found that this approach greatly reduces the cost associated
with more expensive analysis and allows the remaining fuzzing
process to take advantage of the knowledge gained during the
analysis phase.

While our approach can be seen as an approximation to
taint tracking and symbolic execution, our evaluation results
are quite competitive with tools using more expensive “real”
taint tracking and symbolic execution. To perform our eval-
uation, we implemented a prototype of our approach, called
REDQUEEN, that can handle binary-only targets. Our empirical
evaluation on the GNU binutils suite demonstrates, that
our approach is, in all cases, able to cover significantly more
code than existing tools. Measuring the time to equal coverage
yields speedups in the range of 5x to 5000x when compared
to VUZZER [35] and KLEE [12], as well as 2x to 200x against
AFLFAST [10] and LAF-INTEL [2]. In addition, we are the
first to find significantly more bugs (2600) than listed in the
LAVA-M data set (2265). In total, we found an additional 335
unlisted bugs, yielding over 114% of all listed bugs. We only
missed two of the 2265 listed vulnerabilities in the LAVA-M
data set (>99.9% bug coverage).

Moreover, our technique avoids a significant amount of
implementation and performance overhead typically associated
with taint tracking and symbolic execution. Therefore, our
approach is applicable to a much more diverse set of targets
than aforementioned techniques, which require a detailed en-
vironment model. In fact, REDQUEEN is able to fuzz programs
with no need for source code or platform knowledge, as we
demonstrate by applying REDQUEEN to both kernel- as well
as user-space targets. In our evaluation, REDQUEEN found 10
bugs in 2 different Linux file system drivers and 55 bugs in
16 user-space programs and software libraries. Additionally,
16 CVEs have been assigned for some of the more critical
issues we uncovered.

C. Contributions

In summary, we make the following contributions:

• We introduce the concept of input-to-state correspon-
dence as a novel principle to significantly accelerate
feedback-driven fuzzing.

• We show that input-to-state correspondence can be
used instead of taint tracking and symbolic execu-
tion to solve hard fuzzing problems such as dealing
with magic numbers, dynamic multi-byte compares,
and (nested) checksums without introducing any false
positives. The resulting mutation operator is more
efficient than all other mutation operator used by AFL
(measured in new paths found over time used).

• We built a prototype implementation of our method in
a tool called REDQUEEN. Our comprehensive evalua-
tion results demonstrate that REDQUEEN outperforms
all state-of-the-art fuzzing tools in several metrics.

To foster research on this topic, we release our fuzzer at
https://github.com/RUB-SysSec/redqueen.

2

https://github.com/RUB-SysSec/redqueen

II. RELATED WORK

Fuzzing has been an active field of research for decades.
Initially, much attention was focused on improving black-
box fuzzing (e.g., fuzzing strategies in which the fuzzer does
not inspect the program internals and treats it as a black-
box). Which results in improved scheduling algorithms [14],
[36], [41] and more effective mutation or input generation
strategies [4], [29]. Even machine learning techniques were in-
vestigated to infer semi-valid inputs as test cases [8], [24], [27].
Recently, more focus was put on white- and gray-box fuzzing.
Usually, the program under test is instrumented to generate
some kind of feedback (such as code coverage). The archetypal
gray-box fuzzer is AFL [44]. It uses coverage as a feedback
mechanism to learn which inputs are interesting and which
do not trigger new behavior. Much recent work is based on
AFL. The scheduling of AFL was analyzed and improved by
AFLFAST [10]. COLLAFL [19] and INSTRIM [30] improve
the performance of AFL, by decreasing the probability that two
distinct paths are considered the same. The performance of the
fuzzers itself were improved in many different ways [25], [42].
One notable example is go-fuzz [39] which was developed
independently and uses a similar idea as REDQUEEN. The
OSS-FUZZ project scaled the AFL fuzzing model to large
computing clusters and discovered a significant amount of
vulnerabilities in highly relevant open-source software [1].
HONGGFUZZ [6] and KAFL [37] use algorithms inspired by
AFL and modern CPU extensions to demonstrate how binary-
only targets can be fuzzed in an efficient manner. In this work,
we aim at solving problems commonly addressed by white-
box fuzzing techniques. We will, therefore, use this section to
differentiate our approach from existing work on fuzzing.

A. Symbolic/Concolic Execution-based Fuzzing

Several gray- or white-box fuzzing tools make use of sym-
bolic execution to improve test coverage [12], [13]. Symbolic
execution can find vulnerabilities that are very hard to trigger
randomly, or even, with clever heuristics. However, it also
tends to become very slow on large targets and state explosion
has to be carefully taken into account. One common approach
to handle state explosion is to use concolic execution [21]–
[23], [26], [33], [38], [40]. In concolic execution, the program
path is constrained to a concrete path while the solver either
tries to trigger bugs on this path or to uncover a new path.
This approach greatly reduces the number of states that are
being explored and can—at least in some cases—be used
to reduce the complexity of the formulas encountered by
replacing complex expressions with their concrete values.
Additionally, symbolic execution has often been motivated by
the need to solve magic byte checks. Our results show that,
in our empirical evaluation, a much simpler approach is often
sufficient to solve these cases.

B. Taint-based Fuzzing

Similar to symbolic execution, taint tracking is commonly
used by fuzzing tools. It allows learning which parts of the
input are affecting certain operations. In the past, taint tracking
was used to identify and focus on parts of the input that are
used as magic bytes [35], addresses [20], [26], [35], or integers
that might overflow [33]. In this paper, we show that input-to-
state correspondence can often be used as an approximation

to taint tracking and does solve these common problems
much more efficiently. Recently, another taint-based fuzzing
approach called ANGORA [16] was proposed. Similarly to
our approach, ANGORA uses the expensive taint tracking
step only sparsely to overcome hard-to-solve conditions. In
contrast, ANGORA relies on source code access and a special
compiler pass to perform efficient taint tracking, while we
propose a binary-level fuzzer. Moreover, ANGORA cannot
handle checksums.

C. Patching-based Fuzzing

Most symbolic execution based tools are able to generate
valid checksums, but cannot use the faster fuzzing component
to explore the code after the check. Some fuzzers try to patch
hard checks to make a given program easier to fuzz. Three
examples of fuzzing methods that follow this approach are
FLAYER [18], TAINTSCOPE [40], and T-FUZZ [34]. Since we
also patch checksum tests to be able to fuzz efficiently, a more
thorough discussion of these tools is provided in Section III-B.
Our idea for checksum handling is inspired by both FLAYER
and TAINTSCOPE. However, FLAYER needs an explicit list of
conditional branches to patch. In addition, the user has to fix
the input after the fuzzing process. In contrast, TAINTSCOPE
is able to infer the list of checks automatically and patch all
hard-to-solve branches during fuzzing. Then—after finishing
the fuzzing process—TAINTSCOPE uses symbolic execution
to fix crashing inputs. Similar to TAINTSCOPE, our process is
entirely automated. In contrast, however, we use our idea of
input-to-state correspondence to avoid the complex and often
brittle taint tracking and symbolic execution methods. T-FUZZ
also uses an approach related to TAINTSCOPE: the program
is transformed to reach code after hard-to-solve conditions;
broken checks are later fixed using symbolic execution. The
improvement in performance that REDQUEEN provides over T-
FUZZ can be explained by the fact that T-FUZZ needs to spawn
new fuzzing instances for each hard-to-reach part of the code.
Additionally, T-FUZZ does not remove false positives during
fuzzing. Hence, the number of fuzzing instances that are work-
ing on dead ends can grow nearly unbounded. In contrast, our
approach avoids these scalability issues all together by always
maintaining a queue of valid inputs. Therefore REDQUEEN
neither produces, nor spends time on false positives.

D. Binary-Only Fuzzers

Many fuzzers such as AFL, LAF-INTEL and ANGORA
need source code access to add the necessary instrumentation
and patches. As a result, proprietary systems cannot be ana-
lyzed with these fuzzers. To overcome this limitation, some
fuzzers use other mechanisms to obtain feedback. AFL has
spawned multiple forks that use PIN [32], DynamoRIO [11]
or QEMU [9] to obtain coverage information. Similarly, fuzzers
like VUZZER, TAINTSCOPE, FLAYER, T-FUZZ and DRILLER
make use of various dynamic binary instrumentation tools. We
found that the fastest binary-only fuzzer is AFL with QEMU,
which is significantly slower (in executions per second) than
AFL with compile-time instrumentations.

E. The AFL Family

Due to the overwhelming success of the AFL design,
many different tools are heavily based on AFL [1], [2], [5],

3

[10], [16], [31], [37], [38]. Our work is based on KAFL—
an AFL-like fuzzer—and, therefore, it is paramount to have a
rough understanding of the design of AFL. Generally speaking,
fuzzers from the AFL family have three important components:
(i) the queue, (ii) the bitmap, and (iii) the mutators. The queue
is where all inputs are stored. During the fuzzing process,
an input is picked from the queue, fuzzed for a while, and,
eventually, returned to the queue. After picking one input, the
mutators perform a series of mutations. After each step, the
mutated input is executed. The target is instrumented such that
the coverage produced by the input is written into a bitmap. If
the input triggered new coverage (and, therefore, a new bit
is set in the bitmap), the input is appended to the queue.
Otherwise, the mutated input is discarded. The mutators are
organized in different stages. The first stages are called the
deterministic stages. These stages are applied once, no matter
how often the input is picked from the queue. They consist
of a variety of simple mutations such as “try flipping each
bit”. When the deterministic stages are finished or an input
is picked for the second time, the so called havoc phase is
executed. During this phase, multiple random mutations are
applied at the same time at random locations. Similarly, if the
user provided a dictionary with interesting strings, they are
added in random positions. Linked to the havoc stage is the
splicing stage, in which two different inputs are combined at
a random position.

III. INPUT-TO-STATE CORRESPONDENCE

In this section, we introduce a novel fuzzing method
based on the insight that programs have a strong input-to-state
correspondence. We observe that—for a very large number of
programs—values from the input are directly used at various
states during the execution. By observing these values, we
can perform educated guesses as to which offsets to replace
(resembling a very lightweight taint tracking) and which value
to use (similar to symbolic execution based approaches). We
can exploit this relation to deal with challenging fuzzing
problems such as magic bytes and (even nested) checksums.
We explain the different building blocks of our method and
discuss how they address the challenging fuzzing problems
we introduced earlier.

A. Magic Bytes

The first roadblock we tackle are magic bytes. A typical ex-
ample for this class of fuzzing problems is shown in Listing 2;
it represents an excerpt of our running example introduced in
Listing 1. It should be noted that—while we use ASCII values
for readability in our example—input-to-state correspondence
is also very applicable to binary formats.

if(u64(input)== u64(" MAGICHDR "))
bug (1);

Listing 2: Fuzzing problem (1): finding valid input to bypass magic bytes.

These constructs are hard to solve for feedback-driven fuzzers
since they are very unlikely to guess a satisfying input; in
this case the 64-bit input MAGICHDR. Existing approaches [16],
[23], [34], [35], [38], [40] often use taint tracking and symbolic
execution, both of which incur a certain performance overhead.
An orthogonal approach are user-defined dictionaries [43] that

TABLE I: Extracting the set of mutations from a comparison observed at
run-time, using little-endian encoding.

C-Code u64(input) == u64(“MAGICHDR”)

Input “TestSeedInput”

Observed (ASCII) “deeStesT” == “RDHCIGAM”

Variations for < “deeStesT” “RDHCIGAL”
and > comparisons “deeStesT” “RDHCIGAN”

Mutations after little- <“TestSeed” 7→ “MAGICHDR”>
endian encoding <“TestSeed” 7→ “LAGICHDR”>

<“TestSeed” 7→ “NAGICHDR”>

represent expert knowledge about the program under test.
Lastly, there are approaches that split multi-byte comparisons
into many one-byte comparisons. Fuzzers are then able to
solve individual bytes. The prime example is LAF-INTEL [2],
which is very efficient at solving multi-byte compares, but
needs source level access to modify the program. Another
tool is STEELIX [31], which does not depend on access to the
source code. Instead, it uses dynamic binary instrumentation to
split large comparisons into smaller ones. Unfortunately, this
approach has a large performance overhead. The authors of
STEELIX reported that LAF-INTEL performs over 7 times as
many executions per second.

We propose the following lightweight approach based on
input-to-state correspondence to handle magic bytes in a fully
automated manner: we exploit the fact that values from the
program state often directly correspond to parts of the input.
Each time we encounter a new path, we hook all compare
instructions and perform a single trace run. If we encounter a
comparison with distinct arguments, we extract both arguments
and create a custom mutation <pattern 7→ repl>, as we
explain below. The different steps are illustrated in Table I.

i) Tracing. When we start fuzzing a new input (before entering
the deterministic stage of KAFL), we perform a single run
in which we hook all compare instructions and extract the
arguments. This includes some instructions that are emitted by
compilers to replace plain compare instructions or switch-case
structures (by calculating offsets in jump tables). Additionally,
we hook all call instructions, as functions might implement
string comparisons and similar functionality. More details are
given in Section IV.

Example 1. Consider “TestSeedInput” as input for the
code in Listing 2. The compare instruction checks if the first 8
bytes from the input, interpreted as an unsigned 64-bit value,
are equal to the 64 bit unsigned interpretation of the string
“MAGICHDR”. As integers are typically encoded in little endian
format, the ASCII representations of the final values used in
the comparison are “deeStesT” and “RDHCIGAM”.

ii) Variations. At runtime, we do not know which flags are
checked after the comparison; we cannot distinguish different
comparison operations such as “lower than” and “equal to”.
Therefore, we apply some variations to the compared value
such as addition and subtraction by one. As a side effect of this
heuristic, we empirically found that this approach increases the
probability of triggering off-by-one bugs.

4

Example 2. In this case, we add and subtract 1 to/from
“RDHCIGAM” and obtain “RDHCIGAL” and “RDHCIGAN”.

iii) Encodings. It is likely that the input has been processed in
different ways before reaching the actual comparison. In order
to handle the most common cases of input en-/decoding and
to create more mutation candidates, we apply various different
encodings to the mutation. Examples for these encodings are
inverting zero extensions or endianness conversions.

Example 3. We apply a little-endian encoding to our
current mutations “RDHCIGAM”, “RDHCIGAL” and obtain
“MAGICHDR”, “LAGICHDR” and “NAGICHDR”.

We observe that, generally, only a few primitive encoding
schemes are required. By far the most common occurrence is
a one-to-one mapping between input values and state values.
In detail, the encodings we used in our experiments are:

• Zero/Sign Extend(n): the value is interpreted as little
endian integer with zero or sign extension, leading
bytes are stripped to produce a n byte version of
the pattern, if applicable. When no size change takes
place, this encoding is also called plain encoding.

• Reverse: all little endian encoding schemes also have
a big endian equivalent.

• C-String: the value is a C string, and everything after
the first 0 byte is removed.

• Memory(n): the value is treated as an argument to
a function similar to memcmp. Consider only the first
n ∈ {4, 5, . . . , 32} bytes.

• ASCII: the integer value is encoded as ASCII digits.

After manually evaluating the coverage produced by our
fuzzer, we believe that the aforementioned set of encoding
schemes covers the largest part of the common cases in real-
world applications. In the rare cases where these encodings do
not suffice, the set of encodings can also be considered as user
input, similar to the dictionary in other fuzzing systems. In that
case, the user can easily provide own, more specific encoding
schemes. This step can be seen as a lightweight variant of
a synthesis algorithm used to guess the symbolic state at the
current position. In fact, this approach has one major advantage
compared to other approaches for inferring how the input
influences the state (such as symbolic execution or program
synthesis); it is very easy to represent complex operations such
as converting decimal ASCII numbers to integers. This is due
to the fact that we only ever need to perform the encoding on
concrete values instead of querying SMT solvers with symbolic
values.

iv) Application. Finally and most importantly, we use the
pattern of a mutation <pattern 7→ repl> to identify the
parts of the input that are to be replace with the mutation
repl. In contrast to other approaches such as ANGORA or
STEELIX, we apply the whole pattern at once. This has two
advantages: It works for atomic comparisons without further
modification/hooking of the target and it drastically reduces the
number of candidate positions at which to try the replacement.

Example 4. Only the substring “TestSeed” of the input
“TestSeedInput” is compared to “MAGICHDR”. Therefore,
we replace only this part with the generated mutations. This
yields the new testcase “MAGICHDRInput”, and by the vari-
ants introduced to solve inequalities: “LAGICHDRInput” and
“NAGICHDRInput” (as well as potentially more inputs for
other encoding schemes).

v) Colorization. We found that the number of candidate posi-
tions to apply a patch is sometimes rather large. For example,
the smallest valid ext4 file system image is 64 KB and mostly
consists of long strings of zero bytes. Comparing a single
zero value with some constant will yield more than 60, 000
possible positions. During our evaluation, we found that those
comparisons occur rather frequently. Hence we devised an effi-
cient procedure to increase the number of random bytes in the
input. More entropy in the input reduces the space of possible
positions. Using this “colored” copy of the input drastically
reduces the number of candidate positions, usually by multiple
orders of magnitude. After generating a colorized version, we
only apply mutations where the pattern part was found at
the same offset in both inputs. As a result, the remaining
number of mutations to apply is reduced drastically. In our
evaluation, we found that the number of mutations introduced
by this approach is typically two orders of magnitude smaller
than the number of deterministic mutations performed by AFL
on the same input.

Example 5. Assume that we are testing the input
“ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ” in our running
example. Amongst the mutations, we would find <ZZZZZZZZ
7→ MAGICHDR>. This mutation can be applied at many (24)
different positions. Therefore, we try to replace as many
characters as possible without changing the execution path.
In this case, the colorized version might be any random string
of bytes (such as “QYISLKFYDBYYSYWSIBSXEAXOKHNRUCYU”).
Correspondingly, on a rerun, the same instruction would
yield the mutation: <QYISLKFY 7→ MAGICHDR>, which is only
applicable at the first position. Thus, we only produce one
candidate at position 0.

vi) Strings and Memory. Besides the aforementioned integer
comparisons, programs often use functions to compare two
strings or the content of byte arrays. Similarly, these tests
often pose significant challenges to fuzzers. To overcome such
constructs, we also hook all function calls. If the function
takes at least two pointer arguments, we extract the first 128
bytes which are pointed to and treat them similarly to integers.
However, we use a different set of encodings for memory
content than for integers, most notably we either assume that
only the first n ∈ {4, 5, . . . , 32} bytes are compared (functions
similar to memcmp) or all bytes up to the first null byte
(functions from the strcmp family).

vii) Input Specific Dictionary. Lastly, we add values that
contain many consecutive non-zero or non-0xff bytes to a
specific dictionary. The strings found this way will only be
used during the havoc phase of the current input. This allows
us to use values passed to functions whose inner workings are
similar to comparisons while using non-trivial algorithms such
as hashtable lookups. In a way, this is a much stronger version
of the well-known trick to extract the output of the strings
tool and use it as a dictionary for the fuzzing run since we

5

include dynamically computed strings, but not strings that are
not relevant on this path.

B. Checksums

Another common challenge for fuzzers is to efficiently fuzz
beyond checksums. A typical example for this challenge is
depicted in Listing 3, which again represents an excerpt of
our running example introduced in Listing 1.

if(u64(input)== sum(input +8, len -8))
if(u64(input +8) == sum(input +16 , len -16))

if(input [16]== ’R’ && input [17]== ’Q’)
bug (2);

Listing 3: Fuzzing problem (2): finding valid input to bypass checksums.

Existing approaches such as FLAYER [18],
TAINTSCOPE [40] or T-FUZZ [34] all rely on the same
idea: remove the hard checks and fix them later. TAINTSCOPE
and T-FUZZ both detect critical checks automatically and,
then, use symbolic execution to fix the checks once interesting
behavior was found.

We propose replacing the taint tracking and symbolic
execution used in TAINTSCOPE and T-FUZZ with the following
procedure based on input-to-state correspondence: First, we
identify comparisons that appear to be similar to checksum
checks (e.g., one side is an input-to-state corresponding value,
the other side changes regularly). Then, we replace the check
with a comparison that always evaluates to true. Once the
fuzzing process on this patched program produced a seemingly
interesting path, we enter a validation mode. In this mode,
we use the techniques described in the previous section to
correct all patched comparisons. If this succeeds, we continue
as before; otherwise, we learn that one comparison is not under
our control and we remove the patch for this instruction to
avoid performing unnecessary validation steps in the future.

Based on the idea of input-to-state correspondence, we
are able to automatically infer which instructions to patch.
Additionally, we can automatically repair the inputs without
using human intervention or the complex primitives of taint
tracking and symbolic execution. During feedback fuzzing, we
fix any newly found input (in contrast to TAINTSCOPE and
T-FUZZ). This ensures that no false positives are stored in
the queue. As an additional benefit, this allows to share the
queue with other tools. In the following, we discuss details
of the process of selecting, patching, and validating suspected
checksums with a focus on hashes and hash-like computations.

i) Identification. The first step happens during the processing
of magic bytes, as described in Section III-A. This results
in a list of comparisons and the values compared in all
different colorized versions of the input. We use the following
heuristic to filter the comparison instructions for interesting
patch candidates related to checksums:

1) We are able to find the left-hand side of our mutation
pattern in all inputs using the same encoding.

2) Neither argument is an immediate value.
3) pattern changes during the colorization phase (this

is similar to the constraint that TAINTSCOPE uses: the
value depends on many input bytes).

The intuition behind these checks is as follows: We ob-
served that an instruction produced the mutation <pattern 7→

repl>. Assume pattern is a field from the input, and repl
is the hash computed over a part of the input. In a checksum
comparison, the left-hand side should always be part of the
input and replacing large parts of the input with random values
during the colorization should change the hash (and therefore
repl). Similarly, both arguments cannot be immediate values
if pattern is a value from the input and repl is the hash
calculated over some part of the input. Obviously, this is
an over-approximation and we sometimes find checks that
are not part of an actual checksum. Therefore, this approach
has a significant drawback: The removed instructions can be
relevant bounds checks and removing them could introduce
false positives (i.e., erroneous new coverage) or even cause the
program to crash later on. We thus introduce a validation phase
to weed out potential false positives and identify compare
instructions that must not be patched. After the fuzzer finds
a new input and before we store it in the queue, we try to
fix all patched compare instructions. If we identify a patch
that the fuzzer cannot fix automatically, we remove the patch
immediately. Additionally, we discard the input before it ever
reaches the queue. This ensures, that we do not waste time with
patches that we cannot fix easily and that no false positives
are produced: each input is validated with the unmodified
executable.

ii) Patching. After we identified a set of suspected hash
checks, we replace the instructions by patches which have
the same side effects of a successful comparison. Obviously,
this may lead to an undesired behavior: we might accidentally
remove bound checks or make paths reachable that cannot
be triggered without our patches. Nonetheless, we continue
fuzzing with this newly patched binary because we will fix
these problems later.

iii) Verification. After we performed the whole set of fuzzing
stages on one input, we have a queue of preliminary results.
Due to our patches, these inputs might not show the expected
behavior on an unpatched target. During the verification phase,
we try to fix these invalid inputs by applying input-to-state
based mutations obtained from the patched instructions. Then,
we execute the fixed inputs on the unpatched, real target. If
they still trigger new coverage, the fixed input is written to
the real queue. Otherwise, we discard the patch. After all
preliminary inputs were processed this way, the preliminary
queue is cleared for the next round.

IV. IMPLEMENTATION DETAILS

In the following, we provide a brief overview of
REDQUEEN, the proof-of-concept implementation of our ap-
proach. We based our implementation of REDQUEEN on our
fuzzer KAFL [37].

A. kAFL Fuzzer

KAFL is an OS-agnostic, AFL-inspired feedback-driven
kernel fuzzer that uses the hardware-accelerated tracing feature
Intel Processor Trace (Intel PT) to obtain coverage information
without the need to instrument the target. It is build on
top of modified versions of KVM and QEMU (namely KVM-PT
and QEMU-PT) to execute arbitrary x86 operating systems in
isolation. This way, the fuzzer can benefit from virtualization
capabilities such as hardware-accelerated execution of code,

6

snapshots, and Intel PT tracing of the guest’s code. KVM-PT
enables Intel PT tracing of the guest and QEMU-PT decodes
the generated traces into an AFL-compatible bitmap. To do
so, QEMU-PT maintains a runtime disassembly of the target.
This disassembly is perfect, in the sense that we disassemble
each instruction which was executed according to the Intel PT
trace. We use this disassembly to identify instructions to hook
or to patch. This avoids problems which arise from patching
code based on a static disassembly, which might misclassify
some bytes. Both QEMU-PT and KVM-PT also provide custom
hypercalls and direct memory access to the guest’s memory to
facilitate the necessary communication and data transfer with
the target. The fuzzer logic is based on the AFL fuzzing loop
(with an added radamsa [29] stage) and was re-implemented
in Python. Hence, the fuzzing logic is independent from the
target operating system. We also fixed a number of bugs in the
decoding of Intel PT packets that removed a significant amount
of non-determinism resulting from broken traces. In total we
added and changed about 10k lines of code. A large part of
these changes are not due to the techniques proposed in this
paper. Most of these changes were performed to add support
for ring 3 fuzzing, to provide VMI capabilities in KAFL and to
fix bugs. Furthermore, these numbers also contain a significant
amount of code used for evaluation and debugging purposes.

Our techniques require a few primitives: the ability to
obtain a program trace, to inspect the program state at various
breakpoints, and to patch instructions in memory. REDQUEEN
still uses the architecture of KAFL and obtains coverage
information in precisely the same manner. Additionally, it
uses the VMI provided by KVM-PT and QEMU-PT to insert
breakpoints and to inspect memory and register content during
execution. In the following, we discuss how we implemented
our techniques on top of KAFL.

B. Comparison Hooking

We rely on hardware-assisted virtual machine breakpoints
to extract input-to-state correspondences. Each time the run-
time disassembler encounters an interesting compare-like in-
struction, its address is stored such that a hook can be
placed during the next REDQUEEN analysis phase. During the
REDQUEEN phase, breakpoints are placed on all interesting
instructions. When a breakpoint is hit, the arguments are
extracted and saved to a buffer for later use by the fuzzing
logic. Breakpoints are removed after they are hit a small
number of times to limit the performance impact. Note, we
do not only hook cmp instructions but also call instructions
and subtractions. The former are used to identify string and
memory compares, while subtractions are often emitted by
compilers in place of cmp instructions to implement switch
tables. To implement a subtraction, a compiler sometimes
emits special lea or add instructions with a negative offset.
If the first two arguments of a call instruction are valid
pointers (according to various calling conventions), we assume
the function to be a potential compare function and dump the
first 128 bytes of memory for each argument.

C. Colorization

During the colorization step, we try to replace as many
bytes with random values as possible, without changing the
execution path (more precisely, the hash of the AFL bitmap).

This increases the entropy in the input and, therefore, reduces
the number of positions at which an observed pattern can be
applied. This can be done using a binary search approach as
shown in Algorithm 1 which will usually converge within a
small number of executions (typically, in the order of a few
hundred). The worst case would be comparable to one eighth
of the number of bit-flips performed by AFL on each input.
Additionally, in our implementation, we limited the search to
a maximum of 1000 steps. This worked well even for the file
system driver targets, with a minimum input size of 64 KB.

Algorithm 1: Algorithm for colorizing inputs to effi-
ciently deal with a large number of candidate positions

Data: input is the uncolored input
Result: A version of input that has a significantly higher entropy

1 ranges ← (1. . . len(input))
2 original hash ← get bitmap hash(input)
3 while rng = pop biggest range(ranges) do
4 backup ← input[rng]
5 input[rng] ← random bytes()
6 if original hash 6= get bitmap hash(input) then
7 add(ranges, (min(rng). . . max(rng)/2))
8 add(ranges, (max(rng)/2 + 1 . . . max(rng)))
9 input[rng] ← backup

D. Instruction Patching

Once the fuzzing logic has computed a list of candidate
hash comparison instructions from the input-to-state corre-
spondence data, we replace them with bogus compare instruc-
tions that always yields true. In our implementation, we use
the instruction cmp al,al since it is the smallest compare
instruction available on the x86 instruction set architecture.
The remaining bytes of the original instruction are padded
with NOPs. We use the KVM and QEMU debug facilities to apply
these patches in memory inside of the VM. The normal fuzzing
process is then continued with the patched VM. However, if
patches are active, newly found paths are not immediately
added to the queue. Sometimes even benign C code and
common compilers emit assembly that jumps in the middle
of instructions. In our case, this can be detected by the Intel
Processor Tracing (PT) runtime disassembly. In other cases,
techniques such as instruction punning [15] or even plain
breakpoints might be used to avoid introducing unexpected
crashes. However, it should be noted that even in relatively
large target programs, we did not observe any such behavior,
as the number of patched instructions is low (i.e., typically less
than 5 in our empirical evaluation).

E. Input Validation and Fixing

We use Algorithm 2 to verify and fix preliminary results.
This algorithm iteratively tries to fix all comparisons by
repeatedly applying individual mutations and observing the
resulting input-to-state correspondences. Note that there are
situations in which there exists an order of comparisons, which
we need to preserve while fixing the input. Typically, this is
encountered if the header of a file format contains a checksum
over the complete content of the file and some chunks inside
the file are also protected by checksums. For example, the
content of the IDAT chunk of PNG files is protected with a
CRC-32 sum. If the content is zlib compressed, it is guarded

7

by another ADLER-32 checksum. In these situations, we have
to fix the inner checksum first for the outer checksum to be
calculated correctly. The order in which these checksums are
checked is not obvious. However, it is more common for the
outer checksum to be checked first. Therefore, we try to fix
the last comparison first to avoid unnecessary work. In our
experiments, this simple approach was sufficient. However, in
general we cannot assume this to be the case. While perform-
ing a sequence of trial runs to fix all checksums in reverse
order of occurrence, we observe which mutation influence
which compare instructions. Thereby, we create a dependency
graph of the different patched instructions. If the input from
the first iteration is not valid, we use this dependency graph
to perform a topological sort on the patches and to obtain a
valid order. This allows us to apply another round of fixes to
the input in the required sequence. If the final input does not
exhibit the expected behavior on the unmodified executable,
we remove the offending patches and discard the input from
the preliminary queue.

Algorithm 2: Algorithm for fixing preliminary inputs
Data: input is the preliminary input with unsatisfied checksums
Result: Either (None, cmps) if the comparisons cmps could not be

fixed or (in f, None) if the new, fixed input in f
satisfies all comparisons

1 in f←input
2 for cmp in reverse(patched cmps) do
3 in f ← try fix value for cmp(cmp, in f)
4 if cmp ∈ get broken cmps(in f) then
5 return (None, {cmp})
6 dependencies[cmp] ← get cmps influcenced()

7 if get broken cmps(in f) 6= ∅ then
8 in f←input
9 ordered cmps ← topological sort(dependencies)

10 for cmp in ordered cmps do
11 in f ← try fix value for patch(cmp, in f)

12 if get broken cmps(in f) 6= ∅ then
13 return (None, get broken cmps(in f))

14 return (in f, None)

The routine get broken cmps used in Algorithm 2
returns a list of all patched compare instructions that are
currently not satisfied, as well as the values that are being
compared. The routine try fix value for patch tries
to apply all mutations resulting from the patched instruction
as described in Section III-A. Afterwards, this function checks
if any of the mutations fixed the comparison. If such an input
is found, it is returned. Otherwise, we learn that we cannot
satisfy the compare instruction using our technique. The patch
is removed from the list of patches used during further fuzzing
runs. The routine get cmps influenced finds all compare
instructions whose arguments were influenced by the last fix
applied to the input. This allows us to construct the ordering
of compare instructions that we use later, if required.

Example 6. Consider Bug 2 of our running example shown
in Listing 1. After we removed the two checksum checks, the
fuzzer finds the preliminary input “01234567abcdefghRQ”.
Tracing yields the following results: p1 := <01234567
7→ \xc7\x03\0\0\0\0\0\0> and p2 := <abcdefgh 7→
\xa3\0\0\0\0\0\0\0>. If we were to apply both mutations

at the same time, the second mutation would invalidate the
sum of the first one. Therefore, we first try to fix the second
patch (p2) and note that p1 is influenced. After fixing p2,
we obtain the input: “01234567\xa3\0\0\0\0\0\0\0RQ”.
Changing the inner checksum of the input, also changes
the expected value for p1. The new mutation for p1
is now <01234567 7→ \x46\x01\0\0\0\0\0\0>. Then we
apply the first patch p1. This time we do not dis-
turb any of the other patches. The final input is:
“\x46\x01\0\0\0\0\0\0\xa3\0\0\0\0\0\0\0RQ”. As all
patched constraints were satisfied by this input, we perform
one last run without patches to ensure that the input behaves
as expected. This input does indeed trigger Bug 2 and is moved
from the preliminary queue to the real queue. In this example
we did not need the topological sort operation to order the
checks, as we guessed one correct order to fix the patches.

F. Linux User Space Application Loader for KAFL

We extended KAFL by a Linux ring 3 loader to evaluate
against other user space fuzzers and to demonstrate that our
approach is generic and robust. This loader re-implements
the AFL fork server. Since we are targeting binaries, we
use LD PRELOAD to inject the fork server functionality into
the start-up routine of the target. Communication with the
fuzzing logic is performed with custom KAFL hypercalls
triggered by the injected start-up routine. Also, to support
ring 3 tracing in KVM-PT, we set the User bit in the model
specific register IA32 RTIT CTL MSR. Since the original
KAFL was designed to be a kernel fuzzer, it sets only
IA32 RTIT CTL MSR.OS to enable ring 0 tracing. Addi-
tionally, the original fuzzer was only intended to fuzz 64-bit
operating systems. However, since some of the CGC binaries
can only be compiled for 32-bit targets, we extended the
fuzzer to support 32-bit targets. Hence, we added 32-bit mode
disassembling to QEMU-PT to support decoding of 32-bit mode
Intel PT trace data.

V. EVALUATION

We evaluated our prototype implementation of REDQUEEN
as described above to answer the following research questions:

• RQ 1. Are input-to-state correspondence-based tech-
niques general enough to work across a diverse set of
targets and environments?

• RQ 2. How do the results of our input-to-state
correspondence-based techniques compare to other,
more complicated techniques such as approaches
based on taint tracking or symbolic execution?

• RQ 3. What improvements do our input-to-state
correspondence-based techniques provide in real-
world fuzzing scenarios?

To answer these questions, our evaluation is divided into
three parts: First, we perform a comparative evaluation on
two synthetic test sets (LAVA-M and CGC) and a real-world
test set (GNU binutils). The experiments demonstrate that
our combination of methods outperforms all other current
approaches by a significant margin. Second, we demonstrate
that our tool is able to find novel bugs in various well-tested

8

software packages, running in very different environments. In
total, we found 10 bugs in 2 different Linux file system drivers
and 55 bugs in 16 user-space programs and software libraries.
So far, we obtained 16 CVEs, 4 are still pending. Finally, we
measure the efficiency and effectiveness of our technique as
compared to the other mutations performed by KAFL. We also
test the influence of the individual techniques introduced in this
paper, using a case study based on a small statically linked
PNG library because this file format uses nested checksums.
We demonstrate that our approach enables us to overcome
fuzzing roadblocks that previously required dictionaries and
manual removal of hash checks.

A. Evaluation Methods

All experiments were performed on systems running
Ubuntu Server 16.04.2 LTS with an Intel i7-6700 processor
(4 cores) and 24 GB of RAM. We configured all tools to
use one fuzzing process to ensure comparability with tools
such as VUZZER which are not multi-threaded. No experi-
ments contain changes made specifically for certain targets.
Unless stated otherwise, we used an uninformed, generic seed
consisting of different characters from the printable ASCII
set: "ABC. . . XYZabc. . . xyz012. . . 789!¨$. . . ˜+*". Since there
exist various definitions of a basic block and tools such as
LAF-INTEL dramatically change the number of basic blocks
in a binary, we always measure the coverage produced by
each fuzzer on the same uninstrumented binary. As such, the
numbers of basic blocks uncovered may not match the numbers
reported in other papers but are guaranteed to be consistent
within our experiments. All experiments were conducted mul-
tiple times. In each case, we report the median number of
basic blocks found at any time, as well as the 60% confidence
intervals. Recently, much focus was placed on uncovering
“deep” bugs [34]. While the exact definition of “deep” remains
somewhat elusive, we use the following definition as a work in
progress: A bug is considered “deep” if it is hard to reach from
the given seed inputs. We, therefore, consider the ability to find
new code coverage a good proxy for the ability to find “deep”
bugs—a property that is much harder to qualify. Lastly, since
the nomenclature varies across related research, we use “crash”
to describe any input that made the target application crash. We
never talk about the number of “uniqe” crashes found, as this
metric is highly unreliable, as different tools report drastically
different and often inflated numbers of crashes. Instead we say
“we were able to crash” to denote that at least one crash was
found without further triage. We use the term bug to describe
manually verified and triaged bugs with disjoint root causes in
the application. A bug is not necessarily exploitable. Lastly, in
some cases, we obtained CVE numbers which we count and
list individually.

B. LAVA-M

LAVA-M [17] is a synthetic set of bugs inserted in hard-
to-reach places in real-world binaries from the GNU coreutils
suite. It is commonly used to evaluate the efficiency of modern
fuzzers. We first describe the experiments performed on LAVA-
M by other publications and then compare them with our
results, a summary is shown in Table II.

In the original paper of LAVA-M, the authors perform
two experiments: one using an unspecified FUZZER and an

unspecified symbolic execution tool SES (both are undisclosed
“state-of-the-art, high-profile tools” [17]). Both tools were run
against the corpus for 5 hours on an unspecified machine. All
experiments performed by the STEELIX authors were run on
a machine with 8 Intel(R) Xeon(R) CPU E5-1650 v3 cores
and 8 GB of RAM, running 32-bit Ubuntu 16.04 using one
thread. Similarly, Sanjay et al. performed their experiments
with VUZZER [35] using a 5-hour run on an unspecified
machine with 4 GB of RAM on a single core. We performed
a similar experiment where each target was executed for 5
hours. We used the first few bytes of the seed provided by
the original authors as well as our usual uninformed seeds.
Figure 1 displays the results (5 runs of 5 hours each, median
and the 60-percent confidence interval of the number of bugs
found over time, in percent of the number of bugs intended by
the authors of LAVA-M). In all cases, we found more bugs than
the original authors of LAVA-M intended. Also, in all cases,
we needed much less than the full 5 hours to find all bugs. In
the median case, it took less than 5 minutes to find more bugs
on who and base64. After 15 minutes, uniq was fully solved.
Lastly, md5sum was the slowest target, taking 25 minutes. The
reason why md5sum was slower than the other targets is that we
were using a busybox environment in which all files in /bin/
link to the same monolithic binary, significantly slowing down
the md5 calculation.

We found all bugs inserted and listed, except for two bugs
in who. More importantly, we found a significant number of
bugs (337) considered unreachable by the original authors. The
only other fuzzer that managed to find some of these unlisted
bugs was ANGORA. However, we managed to find over 50%
more bugs than ANGORA and more than three times as many
unlisted bugs. Due to the high number of unlisted bugs, we
contacted one of the authors of LAVA-M who confirmed our
findings from the inputs we provided.

From the fact that the difference between informed seed
inputs and uninformed seed inputs is marginal and the fact
that we outperformed the other current state-of-the-art tools by
factors ranging from 8x to 26x, we conclude that the LAVA-M
data set favors the hypothesis that our approach outperforms
state-of-the-art approaches and is able to uncover deep bugs far
from the provided seed inputs. In fact, we are outperforming
all current approaches, even if no seed is given to our tool.
However, it should be noted that the bugs inserted into the
LAVA-M data set are artificial and do not represent real-world
vulnerabilities.

C. Cyber Grand Challenge

The targets used in DARPA’s CGC are another widely used
test set to evaluate fuzzers. Similarly to the LAVA-M corpus,
we will now describe the experimental setups used by various
other fuzzers on these targets. Then, we will compare their
results with our results.

STEELIX only tested a subset of eight CGC binaries and
compared their results against AFL-DYNINST, an AFL version
that uses dynamic binary instrumentation and is significantly
slower than the original AFL. Both tools were allowed to fuzz
for three hours. STEELIX was able to find one crash that AFL
could not find. In contrast, we were able to find the crash in
less than 30 seconds with the seed used by STEELIX.

9

TABLE II: Listed and (+unlisted bugs) found after 5 hours of fuzzing on LAVA-M (numbers taken from the corresponding papers).

Program Listed Bugs FUZZER SES VUZZER STEELIX T-FUZZ ANGORA REDQUEEN
uniq 28 7 0 27 7 26 28 (+ 1) 28 (+ 1)
base64 44 7 9 17 43 43 44 (+ 4) 44 (+ 4)
md5sum 57 2 0 - 28 49 57 (+ 0) 57 (+ 4)
who 2136 0 18 50 194 63 1443 (+ 98) 2134 (+ 328)

00:00 02:30 05:00
0%

20%

40%

60%

80%

100%

120%
base64

uninformed short seeds

00:00 02:30 05:00
0%

20%

40%

60%

80%

100%

120%
who

00:00 02:30 05:00
0%

20%

40%

60%

80%

100%

120%
uniq

00:00 02:30 05:00
0%

20%

40%

60%

80%

100%

120%
md5sum

time (hh:mm)

#
b

u
gs

fo
u

n
d

Fig. 1: Evaluating LAVA-M on informed and uninformed seeds.

VUZZER tested a subset of 63 binaries, filtering binaries
that use floating-point instructions (which VUZZER’s taint
tracking cannot handle), IPC, or binaries that are easily put into
an infinite loop. The authors kindly provided us with the exact
set of targets they used and the set of targets in which they were
able to uncover crashes. Unfortunately, they were not able to
provide us with the exact seeds used. We re-created a similar
set of seeds with the same method. Some inputs were generated
by the poller scripts used in CGC and some inputs were taken
from the original DARPA repository. However, we were unable
to create seeds for nine of the challenges. Consequently, we
excluded them from our evaluation. VUZZER was able to find
crashes in two of these excluded binaries. The experiments
with VUZZER were performed on a host with two unspecified
32-bit Intel CPUs and 4 GB of memory inside the original
DECREE VM. Both VUZZER as well as AFL-PIN were given 6
hours of fuzzing time. They were able to find 29 crashes in
27 binaries. In this setup, AFL-PIN was able to uncover 23
crashes. A significant number of the target binaries runs in a
busy loop waiting for a specific “quit” command. This leads
to a large number of timeouts, greatly reducing the fuzzing
performance. While such a loop would be easy to detect in
a limited setting such as CGC, this optimization would be out
of scope for a more general fuzzer. To mitigate this problem,

the VUZZER authors manually ensured that VUZZER always
appends the correct “quit” command.

We run a similar set of experiments with a few differences:
In contrast to the authors of VUZZER, we used the multi-OS
version released by Trail of Bits [3]. Therefore, some of the
comparisons might be biased due to slight differences. Under
these conditions, we were able to trigger crashes in 31 binaries
on the first try with REDQUEEN, while VUZZER was able to
trigger 25 crashes.

Since these results were produced without adapting
REDQUEEN to CGC at all, this experiment serves as a validation
set to ensure we did not overfit our fuzzing process to any spe-
cific target. Since the AFL fuzzing model is primarily aiming at
binary input formats—CGC contains a large number of interac-
tive line base formats—we performed another experiment: we
added some mutations relevant for text-based protocols (mostly
splicing lines as well as adding random lines). We also used
4 cores each for 2 hours instead of the usual configuration
to speed up experiments. In this experiment, we were able to
uncover 9 additional crashing inputs. In total, we were able
to crash 40 out of the 54 targets. VUZZER was able to find
crashes in 5 binaries which we could not crash. In at least one
case this was due to heavy timeouts, which VUZZER avoided
by adapting their fuzzer to the specific targets as described
earlier (which we did not). On the other hand, we crashed 19
binaries that VUZZER was unable to crash. This suggests that
we are able to outperform both VUZZER by 60% as well as
AFL-PIN by 73% on this data set.

Unfortunately, the authors of T-FUZZ did not disclose the
full results of their CGC experiments. However, they state that,
on the subset of binaries that VUZZER used, they found 29
crashes in the 6 hours allocated—significantly less then the 40
crashes that our approach managed to find.

DRILLER was evaluated on the whole set of CGC binaries.
The experiment used a cluster of unspecified AMD64 CPUs with
four cores per target. The concolic execution processing was
outsourced to another set of 64 concolic execution nodes. Each
concolic execution was limited to 4 GB of memory and every
target was fuzzed for 24 hours. Fuzzing with AFL was able to
uncover crashes in 68 targets. DRILLER was able to increase
this number to 77. It should be noted that, as a participant in
the CGC competition, DRILLER is highly optimized to the CGC
dataset. Yet, the improvements over baseline fuzzing with AFL
were only in the order of 14 %. Our results on the dataset of
VUZZER compared to AFL-PIN (73%) suggest that we might
be able to see improvements similar to DRILLER if we were
to implement the various DECREE specific mechanisms such as
the custom IPC.

10

D. Real-World Applications

We also evaluated REDQUEEN on several real-world ap-
plications. Generally speaking, we found all the types of
bugs fuzzers usually find: out-of-bound read/write accesses
to memory, resource exhaustion (both, time and memory),
memory leaks, stack overflows, division by zeros, assertions,
use-after-free, use of uninitialized values, and so on. For the
purpose of this evaluation, we disregarded the following bug
classes, as they were far too numerous for manual triage and of
little importance for security research: memory leaks, resource
exhaustion, use of uninitialized values (unless they lead to
more severe consequences) and stack overflows.

binutils. To estimate the ability to uncover deep bugs in hard-
to-reach code, we measured the coverage produced by various
tools on real-world binaries from the binutils collection
to expand our evaluation from synthetic test cases to more
realistic tests. We use code coverage as a proxy metric for
the ability to uncover deep bugs, as the number of bugs
found is very hard to establish. To properly compare the
number of bugs found across tools, many thousands of crashes
would have to be investigated. In many cases, most tools were
unable to uncover a single crash, leading to non-descriptive
experiments. We regard code coverage as a very good proxy,
as no fuzzer can find bugs in code that is not covered. As
test suite, we picked all eight programs from the binutils
collection, which are processing one file without modifying it.
Unfortunately, we cannot evaluate against DRILLER since it is
only applicable to DECREE binaries. Also, since both ANGORA
and T-FUZZ are not yet available, we cannot run our own
experiments to compare against them. We, therefore, choose
VUZZER as one of the few available academic state-of-the-art
fuzzers, as well as AFL with the LAF-INTEL and AFLFAST
extensions. Notably, both LAF-INTEL and VUZZER explicitly
aim to overcome magic bytes and other fuzzing roadblocks,
similar to our tool. In all cases, we started with a single
uniformed seed to measure the ability to solve roadblocks.
KLEE does not produce test files as it uncovers new states.
Instead, it only produces a test case after the state has been
fully explored or after the timeout has been reached. Therefore,
it is not uncommon that KLEE writes only a very small number
of test cases while running. After reaching the timeout, it starts
to solve all remaining states to produce more coverage, and, in
some cases, it can spend many hours of additional computation
time to produce the actual test cases. We, therefore, gave KLEE
a 7 hour window to evaluate symbolic states plus 3 hours for
test case production. We forcefully terminated KLEE after a
total of 10 hours. The same architecture makes it very hard
to determine the exact time when a new input was found.
For plotting purposes, we assumed that inputs are found at
a constant rate. This assumption is obviously wrong, as we
would expect far more inputs to be found during the early
hours. However, since we primarily compare the final number
of basic blocks covered, the exact shape of the curve in the
plot is not overly relevant. VUZZER is unable to fuzz targets
that expect their input on stdin, and, therefore, we do not
have VUZZER results for the cxxfilt target. To represent
other Intel PT based fuzzers, we included HONGGFUZZ [6]
running in Intel PT mode and the original KAFL with our
Ring 3 extension.

The results of five 10 hour runs can be seen in Figure 2.

00:00 05:00 10:00
0

200

400

600

800

ar

laf-intel

AFLFast

Redqueen

kAFL

Klee

HonggFuzz

Vuzzer

00:00 05:00 10:00
0

500

1000

1500

2000

2500

3000

size

00:00 05:00 10:00
0

500

1000

1500

2000

2500

cxxfilt

00:00 05:00 10:00
0

500

1000

1500

2000

2500

strings

00:00 05:00 10:00
0

1000

2000

3000

4000

5000

nm-new

00:00 05:00 10:00
0

2000

4000

6000

8000

10000

objdump

00:00 05:00 10:00
0

2000

4000

6000

8000

readelf

00:00 05:00 10:00
0

2000

4000

6000

as-new

Time (hh:mm)

#
B

B
s

fo
u

n
d

Fig. 2: The coverage (in basic blocks) produced by various tools over 5 runs at
10 h each on the binutils. Displayed are the median and the 60 % intervals.

Notably, in all cases, REDQUEEN is able to trigger the most
coverage. To ensure these findings are not the result of random
variation, we employed a Mann-Whitney U test on the number
of basic blocks found, as recommended by Arcuri et al. [7] for
evaluation of randomized algorithms. The results are displayed
in Table III. It can be seen that, in nearly all cases, the observed
differences are significant at p < 0.05. Interestingly, VUZZER
finds very few new basic blocks. We investigated this behavior
to ensure we are not misusing VUZZER. We contacted the
authors, who reproduced our experiments and found very
similar results. In the resulting conversation, it became clear
that VUZZER strongly relies on the assumption that there is
only one valid input format. Since most binutils programs

11

TABLE III: p-values of the Mann-Whitney U test on the number of basic
blocks found in 10h. Nearly all results are statistically significant (p < 0.05).

Target LAF-INTEL AFLFAST KAFL KLEE HONGG VUZZER

ar 0.004 0.004 0.004 0.005 0.004 0.004
cxxfilt 0.014 0.006 0.006 0.006 - -
nm-new 0.018 0.006 0.006 0.004 0.006 0.006
readelf 0.006 0.006 0.006 0.006 0.005 0.006
size 0.006 0.006 0.006 0.006 0.006 0.006
strings 0.006 0.006 0.006 0.006 0.006 0.004
objdump 0.265 0.006 0.018 0.006 0.006 0.006
as-new 0.006 0.500 0.006 0.006 0.006 0.006

read a vast amount of different formats, VUZZER excludes
a significant number of paths from the search. In addition,
VUZZER expects valid inputs to detect error paths. However,
our uninformed inputs did not seem to limit VUZZER severely
as it still was able to find valid ELF files immediately (e.g.,
it did not discard the interesting paths as “uninteresting error
cases”). Using REDQUEEN, we found and reported bugs in the
following binutils: ld-new, as-new, gprof, nm-new, cxxfilt
and objdump. As it turned out, the bugs found in cxxfilt,
nm-new and objdump were all instances of the same bug in
the shared library that demangles C++ symbols.

We found that REDQUEEN, LAF-INTEL and AFLFAST all
reported a significant higher number of crashes. However, most
of these “crashes” were inputs that exceeded the memory limits
set by the fuzzers. We manually validated the crashes found in
objdump and verified that neither AFLFAST nor LAF-INTEL
found any real bug, while some of the crashes identified by
REDQUEEN were indeed novel bugs. This indicates that the
common practice of reporting the number of found crashes can
be a misleading indication and a proper bug triage is necessary.

Case Study: objdump. A surprising observation was
that we were able to solve a complex constraints
in objdump that used the hashtable lookup function
bfd get section by name(bfd* obj, char* name)
to test if a section with the given name is present in the input
object file obj: Since the function was given two pointer
arguments, REDQUEEN automatically extracted the name and
added it to the dynamic dictionary. The havoc stage was later
able to insert it in the right position. Similarly, the reason
that all other fuzzers show a lower performance on ar is
that ar uses a call to strncmp to check that the first few
bytes are “!<thin>” or “!<bout>”. Usually, LAF-INTEL
is able to split such string compares. However, LAF-INTEL
only considers the functions strcmp and memcmp but not the
size-restricted versions. This is a nice example where more
precise approaches need a very detailed environment model.
Both results demonstrate how the simple over-approximations
we use are actually helpful in real-world applications.

Other Targets. To ensure that our tool is able to find novel
bugs, we evaluated the bug finding ability on a diverse set of
real-world targets. The results can be seen in Table IV. In all
cases, we manually triaged and reported the bugs found. We
started with targets commonly used in other papers, namely
libtiff (tiff2ps) [31], [34], [40], imagemagick [34], [40]
and jhead [16], [28], each in the most recent version of
Ubuntu (16.04 LTS) where these previously reported bugs
should be fixed. Even though these tools have been exhaus-
tively tested previously, we found novel bugs which we triaged
and reported. We also evaluated on a set of media file format
based tools: sam2p, wine and fdk-aac (a part of ffmpg). In

TABLE IV: Reported bugs found by REDQUEEN

Application Version Bugs CVEs

ld-new binuitils-2.30-15ubuntu1 3 -
as-new binuitils-2.30-15ubuntu1 8 -
gprof binuitils-2.30-15ubuntu1 2 -
nm-new binuitils-2.30-15ubuntu1 1 1
cxxfilt binuitils-2.30-15ubuntu1 1 1
objdump binuitils-2.30-15ubuntu1 11 4
tiff2ps libtiff-4.0.9 4 -
jhead 3.00-6 13 1
fdk-acc v0.1.6 2 -a

ImageMagick 7.0.7-29 3 -a

wine wine-2.0.2-2ubuntu1 3 2
mruby Commit 51614bbddb5... 1 1
sam2p Commit 5ed411dd145... 1 -a

bash Commit 64447609994... 2 1
libxml2 Commit 35e83488505... 1 1
perl 5.26.1... 1 -a

hfs.kob kernel-4.15.0-15.16 1 1
ntfs.ko kernel-4.15.0-15.16 9 3
Total 65 16
a CVE assignment pending.
b Simultaneously found and reported by syzbot.

the spirit of the original KAFL paper, we used REDQUEEN
to target two file system drivers (specifically hfs.ko and
ntfs.ko) from the most recent Ubuntu release (16.04 LTS).
In both cases, we found and reported multiple memory corrup-
tions. Lastly, in addition to the (mostly) binary focused targets
we evaluated so far, we also tested multiple well known text-
based targets: mruby, perl, bash and libxml2. In nearly all
of the targets we used our uninformaed seed to find the bugs.
This experiment demonstrates that our approach is applicable
not only to user-space code but also to kernel-level code.

Case Study: mruby. One very interesting vulnerability we
found was based on an integer overflow in mruby. When
resizing a string, the next power of two was chosen as new
allocation size. The computation could overflow, resulting in a
negative size. This was prevented by an additional sign check
after the computation. The compiler realized that powers of
two are always positive and, since signed integer overflows
are undefined behaviour in C, removed the check. Therefore,
we were able to produce strings with negative length. Since
the new length was smaller than the old length, no allocation
took place, but the strings length was updated to a negative
value. The resulting string then spans the whole memory range.
This behavior was only present in uninstrumented executables
compiled with gcc and optimization level 2. This bug very
nicely demonstrates why it is important to have techniques that
work effectively on binary-only targets. We strongly suspect
that the overflowing integer (a 64-bit values with 19 digits)
was found by the ASCII integer encoding.

E. Baseline Evaluation: PNG File Format

We performed the following experiments to demonstrate
that the improvements gained in our experiments are indeed
due to the proposed techniques. We use the lodepng library,
a small library that can easily be linked statically and which
facilitates the loading of PNG files. The PNG format is an
interesting case study for common fuzzing roadblocks because
it is based on a list of chunks. Each chunk starts with a
header (identified by a 4-byte magic value) and contains a
CRC32 checksum over the content. The content of the IDAT

12

00:00 00:15 00:30 00:45 01:00
0

200

400

600

800

Checksums Removed

Kafl+dict Kafl Redqueen

00:00 00:15 00:30 00:45 01:00

Unmodified

Time (hh:mm)

#
B

B
s

fo
u

n
d

Fig. 3: Evaluating the impact of REDQUEEN vs KAFL.

chunk is the zlib compressed pixel data, together with another
Adler-32 checksum. In each experiment, we performed 15
runs of one hour each and measured the number of basic
blocks found over the time. The results of the experiments are
displayed in Figure 3. The figure contains the median number
of basic blocks found at each point in time, as well as the
confidence intervals.

First, we validate that magic bytes are successfully solved
by REDQUEEN but not by KAFL. To do so, we disabled the
two checksum checks in the binary and compare the results for
KAFL, KAFL with a dictionary containing all relevant magic
bytes, and REDQUEEN. The results of this experiment are
displayed in the “Checksums Removed” configuration of Fig-
ure 3. It can be seen that the dictionary massively increases the
coverage produced by KAFL compared to the baseline. How-
ever even without a dictionary provided, REDQUEEN is able
to achieve exactly the same coverage—even though it takes
a little more time to do so. For the next experiment, we use
an unmodified target to demonstrate that REDQUEEN is able
to overcome checksums. Again, KAFL without REDQUEEN
is evaluated both, with and without a dictionary. Since KAFL
is unable to overcome checksums, it only finds a very small
number of paths, regardless of the dictionary. REDQUEEN, on
the other hand, is able to identify and solve the relevant check-
sums, and thus achieves as much coverage as in the previous
experiment. In fact, it even finds a few more basic blocks
(the checksum calculation which is now active). This case
study demonstrates that we are able to overcome checksum;
furthermore, it demonstrates how REDQUEEN is able to deal
with these roadblocks in an automated manner. For vanilla
KAFL, we needed to disable checksums (a task not easily
achieved on closed-source targets) and provided a custom
dictionary to obtain interesting coverage. This experiment
indicate that our techniques are as effective as manually finding
a good dictionary and removing checksums.

F. Performance

In this experiment, we measure the efficiency and effective-
ness of our approach. To measure the efficiency, we compare
the overall number of executions per second achieved by
REDQUEEN, KAFL, LAF-INTEL, and AFLFAST. We obtain
a measure for effectiveness by considering the percentage
of inputs found by the different mutation engines used in
REDQUEEN. Lastly, we evaluated the prevalence of the pro-
posed encoding schemes. In all cases, we use the data from
the experiment on the binutils suite in Section V-D.

ar cxxfilt nm-new readelf size strings objdump as-new
0.0

1000.0

2000.0

3000.0

4000.0

ex
ec

u
ti

on
s/

s

Redqueen

Kafl

laf-intel

AFLFast

Fig. 4: Evaluating the execution speed on our binutils targets.

TABLE V: Number of inputs that trigger paths with new coverage per time
spent using different techniques. The time for our input-to-state based mutator
includes tracing, colorization, and execution of all proposed inputs. In most
cases, input-to-state correspondence produces significantly more inputs per
time than any other mutation method used.

Mutation Target #Inputs Time Spend (min) #Inputs/min

Input-To-State

ar 67 0.7 98.0
size 465 7.9 58.7
cxxfilt 309 11.2 27.7
strings 315 8.0 39.4
nm-new 1016 24.3 41.8
objdump 1189 30.7 38.8
readelf 1616 21.1 76.5
as-new 717 31.6 22.7

Deterministic Stages

ar 59 35.1 1.7
size 578 148.9 3.9
cxxfilt 706 241.2 2.9
strings 413 287.3 1.4
nm-new 1767 179.6 9.8
objdump 2385 242.7 9.8
readelf 2929 331.3 8.8
as-new 884 437.3 2.0

Havoc

ar 32 70.9 0.5
size 439 149.2 2.9
cxxfilt 4584 133.1 34.4
strings 381 128.2 3.0
nm-new 1748 167.9 10.4
objdump 2619 164.0 16.0
readelf 1161 113.7 10.2
as-new 1769 75.4 23.5

Splice

ar 18 64.5 0.3
size 86 119.5 0.7
cxxfilt 1140 152.1 7.5
strings 95 115.1 0.8
nm-new 780 117.3 6.7
objdump 335 68.6 4.9
readelf 251 61.5 4.1
as-new 510 31.1 16.4

Radamsa

ar 0 422.2 0.0
size 2 166.0 0.0
cxxfilt 237 47.2 5.0
strings 18 43.3 0.4
nm-new 5 99.4 0.1
objdump 3 81.0 0.0
readelf 2 60.8 0.0
as-new 69 10.2 6.8

The overall fuzzing performance can be seen in Figure 4.
The bars represent the average number of executions per-
formed per second. The usual performance impact for KAFL
and REDQUEEN compared to LAF-INTEL and AFLFAST typ-
ically in the range of 25-50 %. This is due to the fact that
KAFL does not use the fast compiler-based instrumentation
and is working on binary code. Nonetheless, to the best of our
knowledge, REDQUEEN is by far the fastest binary-only fuzzer.

13

TABLE VI: Percentage of the paths found by different encoding schemes.

Encoding Plain Reverse Total

Zero Ext 38.40 % 6.82 % 45.22 %
Sign Ext 22.65 % 6.61 % 29.27 %
Plain 4.42 % 11.64 % 16.06 %
Mem 5.16 % - 5.16 %
C-Str 2.42 % - 2.42 %
ASCII 1.21 % - 1.21 %

In one cases, REDQUEEN performs slightly better than KAFL.
While this result is counter-intuitive (after all, we perform
additional work), there is a good explanation for this behavior:
On real-world targets, the number of executions achieved per
second is heavily dependent on the inputs in the queue. If the
queue is filled with slow inputs, the performance drops. When
KAFL is unable to overcome a roadblock, the only new inputs
are inputs that perform more loop iterations. As it can be seen
in Figure 4, the impact of the REDQUEEN extension on the
number of executions per second is rather low and sometimes
it even increases the number of executions performed. Even
though the breakpoint based tracing is slow (often by a factor
of 50x or more), it hardly influences the fuzzing performance
as the REDQUEEN phase is only triggered once per input in
the queue. The measurements for the effectiveness are show in
Table V. All techniques are used by REDQUEEN on each input,
and the number of of new inputs found by each technique
are noted. It can be seen that input-to-state correspondence
based mutations are often finding as many, or more, new
inputs than the other phases while using significantly less
time. This shows that our techniques are useful far beyond
the archetypical roadblocks: They help finding a significant
number of paths faster than other mutation strategies. Lastly,
we evaluated the prevalence of different encoding schemes by
counting the percentage of paths found using each encoding
scheme. The results are shown in Table VI. It can be seen
that nearly all the improvements that we made are due to
what we consider one-to-one correspondences. Due to the last
two experiments, we consider input-to-state-based mutations a
highly general, effective, and efficient scheme that can be used
to significantly improve the performance of fuzzers.

G. High-Level Summary

After showing that we are able to substantially increase
the coverage produced on three large test corpora and to
find novel bugs in both kernel- and user-space software, we
conclude that RQ 1. holds and input-to-state correspondence
based techniques are useful for fuzzing purposes. After com-
paring the results of state-of-the-art tools on the same test
sets, we feel confident to answer RQ 2.: we are able to
outperform current symbolic execution and taint tracking based
approaches, represented by VUZZER, ANGORA, T-FUZZ and
KLEE, when measuring the ability to uncover new behaviour
and bugs. Lastly, we demonstrate that—even in a binary-only
scenario—our input-to-state correspondence based techniques
are powerful enough to compete with other approaches, even
if hash checks are removed for the competing tools and
they are provided with a proper dictionary. This answers
RQ 3. In summary, we feel confident that our input-to-state
correspondence method significantly improves coverage-based
feedback fuzzing.

VI. LIMITATIONS

Our approach is applicable without access to the source
code and without knowledge of the environment. Yet, it out-
performs state-of-the-art fuzzers even when they have access to
the source code. However, this does not mean that more com-
plex approaches are useless. Instead, we strongly believe these
approaches are useful in certain cases where our approach does
not offer any advantages. We encountered some examples for
such cases while manually inspecting the different targets dis-
cussed in this paper: the PNG file format, contains compressed
data which the decoder decompresses during execution. In
some programs of the binutils test set, a string from the
input is used to index a hash map, returning an integer that is
used thereafter. Lastly, the base64 utility from the LAVA-M
data set applies base64 decoding. Our current implementation
does not provide an encoding scheme for base64. In all of
these cases the input does not correspond to the state after the
transformation took place. Therefore our approach is unable to
efficiently solve constraints that occur afterwards. We believe
that the first two cases (compression and hash maps) are also
hard for concolic execution based approaches. Most concolic
engines cannot efficiently handle cases where one has to use
different paths to change values. In the case of base64, we
could easily add another encoder. However, as our evaluation
shows, these cases are rare. Consequently, tools that are able
to solve these cases struggle with more common problems,
such as path explosion or poor performance on complex, real-
world targets. We believe that it would be beneficial to use our
lightweight approach as a first step where possible, and than
solve the remaining challenges using complex approaches.

VII. CONCLUSION

In this paper, we presented and evaluated methods based
on input-to-state correspondence to improve fuzzing. We have
shown that it is possible to significantly improve the coverage
in binary-only targets by solving magic-bytes comparisons and
checksum checks. While our approach is not as grounded in
formalism as other approaches based on symbolic execution
or taint tracking, we believe that it is very much in the
spirit of AFL: it is fast, lightweight, and—most importantly—
robust. Even if some parts of the program are very hard to
analyze, our approach remains applicable and effective in other
parts of the target. We believe that our work shows that we
can significantly improve the performance of fuzzers without
falling back to fragile and complex methods.

ACKNOWLEDGMENTS

This work was supported by Intel as part of the Intel
Collaborative Research Institute “Collaborative Autonomous
& Resilient Systems” (ICRI-CARS). The research leading
to these results has received funding from the European
Unions Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 786669. The content of this
document reflect the views only of their authors. The European
Commission/Research Executive Agency are not responsible
for any use that may be made of the information it contains.
Finally, we would like to thank Ali Abbasi, Joel Frank, Emre
Güler and Christine Utz for their valuable feedback.

14

REFERENCES

[1] Announcing OSS-Fuzz: Continuous fuzzing for open source
software. https://testing.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.html.

[2] Circumventing fuzzing roadblocks with compiler transformations.
https://lafintel.wordpress.com/. Accessed: 2018-08-07.

[3] Darpa challenge binaries on linux, os x, and windows. https:
//github.com/trailofbits/cb-multios. Accessed: 2018-08-07.

[4] Peach. http://www.peachfuzzer.com/. Accessed: 2018-08-07.
[5] Project Triforce: Run AFL on Everything! https://www.nccgroup.

trust/us/about-us/newsroom-and-events/blog/2016/june/
project-triforce-run-afl-on-everything/.

[6] Security oriented fuzzer with powerful analysis options. https://
github.com/google/honggfuzz. Accessed: 2018-08-07.

[7] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24(3):219–250, 2014.

[8] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Syn-
thesizing program input grammars. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2017.

[9] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
USENIX Annual Technical Conference, FREENIX Track, 2005.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[11] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design
and implementation of a dynamic optimization framework for windows.
In ACM Workshop on Feedback-Directed and Dynamic Optimization,
2001.

[12] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2008.

[13] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing Mayhem on Binary Code. In IEEE Symposium
on Security and Privacy, 2012.

[14] Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive
mutational fuzzing. In IEEE Symposium on Security and Privacy, 2015.

[15] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R.
Newton. Instruction punning: Lightweight instrumentation for x86-64.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2017.

[16] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy, 2018.

[17] Brendan Dolan, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mam-
bretti, William Robertson, Frederick Ulrich, and Ryan Whelan. LAVA:
large-scale automated vulnerability addition. In IEEE Symposium on
Security and Privacy, 2016.

[18] Will Drewry and Tavis Ormandy. Flayer: exposing application internals.
In USENIX Workshop on Offensive Technologies (WOOT), 2007.

[19] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In IEEE
Symposium on Security and Privacy, 2018.

[20] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In International Conference on Software Engineering
(ICSE), 2009.

[21] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-
based whitebox fuzzing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2008.

[22] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed
Automated Random Testing. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2005.

[23] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated
whitebox fuzz testing. In Symposium on Network and Distributed
System Security (NDSS), 2008.

[24] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Ma-
chine learning for input fuzzing. Technical report, January 2017.

[25] Peter Goodman. Shin GRR: Make Fuzzing Fast
Again. https://blog.trailofbits.com/2016/11/02/
shin-grr-make-fuzzing-fast-again/.

[26] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert
Bos. Dowsing for overflows: A guided fuzzer to find buffer boundary
violations. In USENIX Security Symposium, 2013.

[27] HyungSeok Han and Sang Kil Cha. Imf: Inferred model-based fuzzer.
In ACM Conference on Computer and Communications Security (CCS),
2017.

[28] Wookhyun Han, Byunggill Joe, Byoungyoung Lee, Chengyu Song,
and Insik Shin. Enhancing memory error detection for large-scale
applications and fuzz testing. In Symposium on Network and Distributed
System Security (NDSS), 2018.

[29] Aki Helin. A general-purpose fuzzer. https://gitlab.com/akihe/
radamsa. Accessed: 2018-08-07.

[30] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun Huang.
Instrim: Lightweight instrumentation for coverage-guided fuzzing. In
Symposium on Network and Distributed System Security (NDSS), Work-
shop on Binary Analysis Research, 2018.

[31] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin,
Yang Liu, and Alwen Tiu. Steelix: Program-state Based Binary Fuzzing.
In Joint Meeting on Foundations of Software Engineering, 2017.

[32] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: building customized program analysis tools with dynamic
instrumentation. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2005.

[33] David Molnar, Xue Cong Li, and David Wagner. Dynamic Test
Generation to Find Integer Bugs in x86 Binary Linux Programs. In
USENIX Security Symposium, 2009.

[34] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by
program transformation. In IEEE Symposium on Security and Privacy,
2018.

[35] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware Evolutionary
Fuzzing. In Symposium on Network and Distributed System Security
(NDSS), February 2017.

[36] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan M
Foote, David Warren, Gustavo Grieco, and David Brumley. Optimizing
seed selection for fuzzing. In USENIX Security Symposium, 2014.

[37] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kafl: Hardware-assisted feedback fuzzing
for os kernels. In USENIX Security Symposium, 2017.

[38] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective sym-
bolic execution. In Symposium on Network and Distributed System
Security (NDSS), 2016.

[39] Dmitry Vyukov. gofuzz. https://go-talks.appspot.com/
github.com/dvyukov/go-fuzz/slides/go-fuzz.slide#17.

[40] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. TaintScope: A
checksum-aware directed fuzzing tool for automatic software vulner-
ability detection. In IEEE Symposium on Security and Privacy, 2010.

[41] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.
Scheduling black-box mutational fuzzing. In ACM Conference on
Computer and Communications Security (CCS), 2013.

[42] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Design-
ing new operating primitives to improve fuzzing performance. In ACM
Conference on Computer and Communications Security (CCS), 2017.

[43] Michał Zalewski. afl-fuzz: making up grammar with a dic-
tionary in hand. https://lcamtuf.blogspot.de/2015/01/
afl-fuzz-making-up-grammar-with.html. Accessed:2018-08-07.

[44] Michał Zalewski. american fuzzy lop. http://lcamtuf.coredump.
cx/afl/. Accessed: 2018-08-07.

15

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://lafintel.wordpress.com/
https://github.com/trailofbits/cb-multios
https://github.com/trailofbits/cb-multios
http://www.peachfuzzer.com/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://go-talks.appspot.com/github.com/dvyukov/go-fuzz/slides/go-fuzz.slide#17
https://go-talks.appspot.com/github.com/dvyukov/go-fuzz/slides/go-fuzz.slide#17
https://lcamtuf.blogspot.de/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.de/2015/01/afl-fuzz-making-up-grammar-with.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Common Fuzzing Roadblocks
	Our Approach: Input-to-State Correspondence
	Contributions

	Related Work
	Symbolic/Concolic Execution-based Fuzzing
	Taint-based Fuzzing
	Patching-based Fuzzing
	Binary-Only Fuzzers
	The AFL Family

	Input-to-State Correspondence
	Magic Bytes
	Checksums

	Implementation Details
	kAFL Fuzzer
	Comparison Hooking
	Colorization
	Instruction Patching
	Input Validation and Fixing
	Linux User Space Application Loader for kAFL

	Evaluation
	Evaluation Methods
	LAVA-M
	Cyber Grand Challenge
	Real-World Applications
	Baseline Evaluation: PNG File Format
	Performance
	High-Level Summary

	Limitations
	Conclusion
	References

